PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Ant colony optimization algorithm for workforce planning: influence of the evaporation parameter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
EN
Abstrakty
EN
Optimization of the production process is important for every factory or organization. The better organization can be done by optimization of the workforce planing. The main goal is decreasing the assignment cost of the workers with the help of which, the work will be done. The problem is NP-hard, therefore it can be solved with algorithms coming from artificial intelligence. The problem is to select employers and to assign them to the jobs to be performed. The constraints of this problem are very strong and for the algorithms is difficult to find feasible solutions. We apply Ant Colony Optimization Algorithm to solve the problem. We investigate the algorithm performance according evaporation parameter. The aim is to find the best parameter setting.
Rocznik
Tom
Strony
177--181
Opis fizyczny
Bibliogr. 25 poz., wz., rys.
Twórcy
  • IICT, BAS, Sofia, Bulgaria
  • DLCS University of Málaga 29071 Málaga, Spain
  • IBPhBME, BAS, Sofia, Bulgaria
autor
  • SRI, PAS, Warsaw, Poland
Bibliografia
  • 1. Alba E., Luque G., Luna F., Parallel Metaheuristics for Workforce Planning, J. Mathematical Modelling and Algorithms, Vol. 6(3), Springer, 2007, 509-528.https://doi.org/10.1007/s10852-007-9058-5
  • 2. Albayrak G., zdemir ., A state of art review on metaheuristic methods in time-cost trade-off problems, International Journal of Structural and Civil Engineering Research, Vol. 6(1), 2017, 30-34. https://doi.org/10.18178/ijscer.6.1.30-34
  • 3. Bonabeau E., Dorigo M. and Theraulaz G., Swarm Intelligence: From Natural to Artificial Systems, New York,Oxford University Press, 1999.
  • 4. Campbell G., A two-stage stochastic program for scheduling and allocating cross-trained workers, J. Operational Research Society 62(6), 2011, 1038-1047. https://doi.org/10.1057/jors.2010.16
  • 5. Dorigo M, Stutzle T., Ant Colony Optimization, MIT Press, 2004.
  • 6. Easton F., Service completion estimates for cross-trained workforce schedules under uncertain attendance and demand, Production and Operational Management 23(4), 2014, 660-675. https://doi.org/10.1111/poms.12174
  • 7. Fidanova S., Roeva O., Paprzycki M., Gepner P., InterCriteria Analysis of ACO Start Startegies, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, 2016, 547-550. https://doi.org/10.1007/978 - 3-319-99648-64
  • 8. Fidanova S., Luquq G., Roeva O., Paprzycki M., Gepner P., Ant Colony Optimization Algorithm for Workforce Planning, FedCSIS’2017, IEEE Xplorer, IEEE catalog number CFP1585N-ART, 2017, 415-419. https://doi.org/10.15439/2017F63
  • 9. Roeva O., Fidanova S., Luque G., Paprzycki M., Gepner P., Hybrid Ant Colony Optimization Algorithm for Workforce Planning, FedCSIS’2018, IEEE Xplorer, 2018, 233-236. https://doi.org/10.15439/2018F47
  • 10. Glover F., Kochenberger G., Laguna M., Wubbena, T. Selection and assignment of a skilled workforce to meet job requirements in a fixed planning period. In:MAEB04, 2004, 636-641.
  • 11. Grzybowska K., Kovcs, G., Sustainable Supply Chain - Supporting Tools, Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Vol. 2, 2014, 1321-1329. https://doi.org/10.15439/2014F75
  • 12. Hewitt M., Chacosky A., Grasman S., Thomas B., Integer programming techniques for solving non-linear workforce planning models with learning, European J of Operational Research 242(3),2015, 942-950. https://doi.org/10.1016/j.ejor.2014.10.060
  • 13. Hu K., Zhang X., Gen M., Jo J., A new model for single machine scheduling with uncertain processing time, J Intelligent Manufacturing, Vol 28(3), Springer, 2015, 717-725. https://doi.org/10.1007/s10845-015-1033-9
  • 14. Li G., Jiang H., He T., A genetic algorithm-based decomposition approach to solve an integrated equipment-workforce-service planning problem, Omega, Vol. 50, Elsevier, 2015, 1-17. https://doi.org/10.1016/j.omega.2014.07.003
  • 15. Li R., Liu G., An uncertain goal programming model for machine scheduling problem. J. Inteligent Manufacturing, Vol. 28(3), Springer, 2014, 689-694. https://doi.org/10.1007/s10845-014-0982-8
  • 16. Mucherino A., Fidanova S., Ganzha M., Introducing the environment in ant colony optimization, Recent Advances in Computational Optimization, Studies in Computational Intelligence, Vol. 655, 2016, 147-158. https://doi.org/10.1007/978 - 3-319-40132-49
  • 17. Ning Y., Liu J., Yan L., Uncertain aggregate production planning, Soft Computing, Vol. 17(4), Springer, 2013, 617-624. https://doi.org/10.1007/s00500-012-0931-4
  • 18. Othman M., Bhuiyan N., Gouw G., Integrating workers’ differences into workforce planning, Computers and Industrial Engineering, Vol. 63(4), 2012, 1096-1106. https://doi.org/10.1016/j.cie.2012.06.015
  • 19. Parisio A, Jones CN., A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand, Omega, Vol. 53, Elsevier, 2015, 97-103. https://doi.org/10.1016/j.omega.2015.01.003
  • 20. Roeva O., Atanassova V., Cuckoo search algorithm for model parameter identification, Int. J. Bioautomation, Vol. 20(4), 2016, 483-492.
  • 21. Soukour A., Devendeville L., Lucet C., Moukrim A., A Memetic algorithm for staff scheduling problem in airport security service, Expert Systems with Applications, Vol. 40(18), 2013, 7504-7512. https://doi.org/10.1016/j.eswa.2013.06.073
  • 22. Tilahun S.L., Ngnotchouye J.M.T., Firefly algorithm for discrete optimization problems: A survey, Journal of Civil Engineering, Vol. 21(2), 2017, 535-545. https://doi.org/10.1007/s12205-017-1501-1
  • 23. Toimil D., Gmes A., Review of metaheuristics applied to heat exchanger network design, International Transactions in Operational Research, Vol. 24(1-2), 2017, 7-26. https://doi.org/10.1111/itor.12296
  • 24. Yang G., Tang W., Zhao R., An uncertain workforce planning problem with job satisfaction, Int. J. Machine Learning and Cybernetics, Springer, 2016. https://doi.org/10.1007/s13042-016-0539-6 http://rd.springer.com/article/10.1007/s13042-016-0539-6
  • 25. Zhou C., Tang W., Zhao R., An uncertain search model for recruitment problem with enterprise performance, J Intelligent Manufacturing, Vol. 28(3), Springer, 2014, 295-704. http://dx.doi.org/10.1007/s10845-014-0997-1
Uwagi
1. Work presented here is partially supported by the National Scientific Fund of Bulgaria under grant DFNI DN12/5 “Efficient Stochastic Methods and Algorithms for Large-Scale Problems”, Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European structural and Investment funds, and by the Polish-Bulgarian collaborative grant “Practical aspects for sciantific computing”.
2. Track 1: Artificial Intelligence and Applications
3. Technical Session: 12th International Workshop on Computational Optimization
4. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08bbd360-54be-4d97-bd2c-816c8085111b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.