PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and Exploitation Load Tests of the Suspended Route Slings Caused by Passage of the Locomotive at Various Speed along Mining Excavation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite the fact that suspended monorails have been used in the mining industry for over 50 years it is necessary to continue research on the possibilities of increasing the unit mass of the transported load or the speed of people transport. The first step is to establish the exact dynamic load of suspended route’ elements and compare this value with easy to calculation static load. The objective of the research was to determine the influence of speed and direction of travel on maximum load force applied to the sling of the route in mining excavation. The research results indicated that the speed of 2 ms−1 does not significantly influence the load on the sling. Theoretical hypothesis, stating that the estimation of the force value in the sling ought to be performed using projecting on a surface perpendicular to the route was confirmed. It was also proven that in order to characterize the geometry of the sling as well as a precise analysis of its load it is necessary to employ the length and the angle of the chain in relation to the above mentioned surface. Upon employing statistical analysis of the test results, the maximum dynamic effect of the locomotive passing was determined to be 20.1 ± 2.5% of the value of the calculated static load for all slings, projected onto a plane perpendicular to the route. For a single sling, mounted on a test route section inclined at an angle of about 10°, the increase in force due to the passage of the locomotive was up to 21.0% of the static load for this sling.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, Poland
Bibliografia
  • 1. Gao F., Xiao L.J., Ma H.G., Guo S. Analysis on the Construction of the Monorail Hoist Auxiliary Transportation System in Coal Mine. Applied Mechanics and Materials. 2013; 278–280: 189–192.
  • 2. Beker Mining Systems AG. Minetrans, from https://www.becker-mining.com/sites/default/files/BM-GER-TRANSPORT_web.pdf, accessed on 2021-08-27.
  • 3. Famur Group. Diesel Locomotive FMS, https:// famur.com/en/diesel-locomotive-fms, accessed on 2021-08-27.
  • 4. Drozd K., Nieoczym A. Dynamic load of suspension chains generated during the movement of the selfpowered diesel transportation system on a suspended monorail track in the mining excavation (in Polish). Lublin University of Technology Edition; 2020.
  • 5. Cvijović G.M., Bošnjak S.M. Calculation methods’ comparative analysis of monorail hoist crane local bending effects. Tehnika. 2016; 71(4): 563–570.
  • 6. DIN 22252:2012. Round steel link chains for use in continuous conveyors and winning equipment in mining. Deutsches Institut für Normung. Berlin.
  • 7. PN-G-46701:1997. Łańcuchy ogniwowe górnicze. Polski Komitet Normalizacyjny. Warszawa.
  • 8. ISO 610:1990. High-tensile steel chains (round link) for chain conveyors and coal ploughs. International Organization for Standardization-ISO/TC 82 Mining. Geneva.
  • 9. Tokarczyk J., Rotkegel M., Pytlik A., Niedworok A. Research on the impact of forces and acceleration during the riding and braking of a suspended monorail. Archives of Mining Sciences. 2020; 65(2): 399–414.
  • 10. Gutarevich V.O., Kondratenko M.P. Dynamics of traction device of mine suspended monorail road. Sustainable Development of Mountain Territories. 2020; 12(3): 410–417.
  • 11. Gutarevich V.O. Longitudinal dynamics of mine suspended monorail. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2015; 5(1): 83–88.
  • 12. Pytlik A. Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation. Studia Geotechnica et Mechanica. 2019; 41(2): 81–92.
  • 13. Horyl P., Šňupárek R., Maršálek P., Poruba Z., Pacześniowski K. Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montanistica Slovaca. 2019; 24(3): 213–222.
  • 14. Tokarczyk J. Method for identification of results of dynamic overloads in assessment of safety use of the mine auxiliary transportation system. Archives of Mining Sciences. 2016; 61(4): 765–777.
  • 15. Szewerda K., Tokarczyk J., Pytlik A. Suspended monorail emergency braking trolley computational model verification based on bench tests. IOP Conference Series: Earth and Environmental Science. 2019; 261: 012052.
  • 16. Tokarczyk J., Dudek M. Methods for computer aiding the configuration and assessment of auxiliary mine transportation means. Management Systems in Production Engineering. 2020; 28(4): 268–275.
  • 17. Herbuś K., Szewerda K., Świder J. Virtual prototyping of the suspended monorail in the aspect of increasing the permissible travel speed in hard coal mines. Eksploatacja i Niezawodność – Maintenance and Reliability. 2020; 22(4): 610–619.
  • 18. Prochowski L., Żuchowski A. Analysis of the influence of passenger position in a car on a risk of injuries during a car accident. Eksploatacja i Niezawodność – Maintenance and Reliability. 2014; 16(3): 360–366.
  • 19. Axis Sp. z o.o. Meters with external sensor, from https://www.axis.pl/en/pk-meters-with-external- sensor-133.html, accessed on 2021-08-27.
  • 20. Famur Group. Suspended Monorail Tracks, from http://famur.com/en/suspended-monorail-tracks, accessed on 2021-08-27.
  • 21. Ferrit – Global Mining Solutions, Důlní závěsná lokomotiva, from http://www.ferrit.cz/cs/produkty/ zavesna-doprava/lokomotivy-dieselove/dlz110f-ii, accessed on 2021-08-27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08b039b0-79bb-4c3e-9fb6-5a0ebf04ca5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.