PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability of feed forward artificial neural networks versus nonlinear structural models in high speed deformations: A critical comparison

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, artificial neural networks have been proposed for engineering applications, such as predicting stresses and strains in structural elements. However, the question arises, how many complex influences can be included in an artificial neural network (ANN) and how accurate these predictions are in comparison to classical finite element solutions. A weakness of finite element predictions is that they can behave sensitive and unstable to changes in material parameters. An ANN does not need an underlying model with parameters and uses input variables, only. In the present study the stability of numerical results obtained by ANN and FEM are compared to each other for a problem in structural dynamics. The result gives new insight about the possibilities to predict accurately structural deformations by means of ANNs. As an example for highly complex geometrically and physically nonlinear structural deformations, the response of circular metal plates subjected to shock waves is investigated.
Rocznik
Strony
95--111
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Institute of General Mechanics, RWTH Aachen University, Templergraben 64, D-52056 Aachen, Germany
autor
  • Institute of General Mechanics, RWTH Aachen University, Templergraben 64, D-52056 Aachen, Germany
autor
  • Institute of General Mechanics, RWTH Aachen University, Templergraben 64, D-52056 Aachen, Germany
Bibliografia
  • 1. M. Shakiba, N. Parson, X.G. Chen, Modeling the effects of Cu content and deformation variables on the hight-temperature flow behavior of dilute Al-Fe-Si alloys using an artificial neural network, Materials, 9, 536, 1–13, 2016.
  • 2. A.-A. Chojaczyk, A.P. Teixeira, C. Luìs, J.-B. Cardosa, C.-G. Soares, Review and application of artificial neural networks models in reliability analysis of steel structures, Structural Safety, 52, A, 78–89, 2015.
  • 3. D. Zhao, D. Ren, K. Zhao, S. Pan, X. Guo, Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel by experimentation and artificial neural network, Journal Manufacturing Processes, 30, 63–74, 2017.
  • 4. J. Cheng, Q.S. Li, Reliability analysis of structures using artificial neural network based genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 197, 3742–3750, 2008.
  • 5. J. Mathew, D. Parfitt, K. Wilford, N. Riddle, M. Alamaniotis, A. Chroneos, M. E. Fitzpatrick, Reactor pressure vessel embrittlement: Insights from neural network modelling, Journal of Nuclear Materials, 502, 311–322, 2018.
  • 6. S. Mandal, P.V. Sivaprasad, S. Venugopal, K.-P.-N. Murthy, Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion, Applied Soft Computing, 9, 237–244, 2009.
  • 7. A.A. Javadi, T.P. Tan, M. Zhang, Neural network for constitutive modelling in finite element analysis, Computer Assisted Mechanics and Engineering Sciences, 10, 4, 523–529, 2003.
  • 8. M. Lefik, D.-P. Boso, B.A. Schrefler, Artificial neural networks in numerical modeling of composites, Computer Methods in Applied Mechanics and Engineering, 198, 1785–1804, 2009.
  • 9. T. Chen, H. Chen, Universal approximation to non-linear operators by neural networks with arbitrary activation functions and its application to dynamical systems, IEEE Transactions on Neural Networks, 6, 4, 911–917, 1995.
  • 10. A. Ajmani, D. Kamthania, M.N. Hoda, A Comparative Study on Constructive and Non- Constructive Supervised Learning Algorithms For Artificial Neural Networks, Proceedings of the 2nd National Conference, Bharati Vidyapeeths Institute of Computer Applications and Management, INDIACom, New Delhi, 2008.
  • 11. R. Kaunda, New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength, Journal of Rock Mechanics and Geotechnical Engineering, 6, 338–347, 2014.
  • 12. A.A. Javadi, M. Rezania, Applications of artificial intelligence and data mining techniques in soil modeling, Geomechanics and Engineering, 1, 1, 53–74, 2009.
  • 13. M. Lu, S.-M. AbouRizk, U.H. Hermann, Sensitivity analysis of neural networks in spool fabrication productivity studies, Journal of Computing in Civil Engineering, 15, 4, 299–308, 2001.
  • 14. M. Stoffel, Sensitivity of simulations depending on material parameter variations, Mechanics Research Communications, 32, 332–336, 2005.
  • 15. T.A. Bui, H. Wong, F. Deleruyelle, L.Z. Xie, D.T. Tran, A thermodynamically consistent model accouting for viscoplastic creep and anisotropic damage in unsaturated rocks, International Journal of Solids and Structures, 117, 26–38, 2017.
  • 16. F.C. Salvado, F. Teixeira-Dias, S.M. Walley, L.J. Lea, J.B. Cardoso, A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals, Progress in Materials Science, 88, 186–231, 2017.
  • 17. A.-A. Javadi, M. Rezania, Intelligent finite element method: An evolutionary approach to constitutive modeling, Advanced Engineering Informatics, 23, 442–451, 2009.
  • 18. M.H. Shojaeefard, M. Akbari, M. Tahani, F. Farhani, Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminium to brass, Advances in Materials Science and Engineering, 2013, ID 574914, 1–7, 2013.
  • 19. M. Stoffel, F. Bamer, B. Markert, Artificial neural networks and intelligent finite elements in non-linear structural mechanics, Thin-Walled Structures, 131, 102–106, 2018.
  • 20. M. Stoffel, F. Bamer, B. Markert, Neural network based constitutive modeling of nonlinear viscoplastic structural response, Mechanics Research Communications, 95, 85–88, 2019.
  • 21. J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61, 85–117, 2015.
  • 22. M. Stoffel, R. Schmidt, D. Weichert, Shock wave-loaded plates, International Journal of Solids and Structures, 38, 7659–7680, 2001.
  • 23. M. Stoffel, R. Schmidt, D. Weichert, Numerical and Experimental Analysis of Shock Wave-loaded Plates, Mechanik Berichte Nr. 3, Institute of General Mechanics, RWTH Aachen University, Aachen, 2001.
  • 24. J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1994.
  • 25. V.-K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward naural networks: A review of two decades of research, Engineering Applications of Artificial Intelligence, 60, 97–116, 2017.
  • 26. Z. Lu, Q. Pan, X. Liu, Y. Qin, Y. He, S. Cao, Artificial neural network prediction to the hot compressive deformation behavior of Al-Cu-Mg-Ag heat-resistant aluminium alloy, Mechanics Research Communications, 38, 192–197, 2011.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019.)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08afce08-089c-4b80-9156-86e3db7dec9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.