PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the gas flow in permeate channel in membrane gas separation process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyses the real behaviour of the fluid in the channels of a three-end membrane module. The commonly accepted mathematical model of membrane separation of gas mixtures in such modules assumes a plug flow of fluid through the feed channel and perfect mixing in the permeate channel. This article discusses the admissibility of accepting such an assumption regarding the fluid behaviour in the permeate channel. Throughout analysis of the values of the Péclet number criterion, it has been demonstrated that in the industrial processes of membrane gas separation, the necessary conditions for the perfect mixing in the permeate channel are not met. Then, CFD simulations were performed in order to establish the real fluid behaviour in this channel. It was proved that in the permeate channel the fluid movement corresponds to the plug flow, with the concentration differences at both ends of the module being insignificant. In view of the observations made, the admissibility of concentration stability assumptions in the mathematical models for the permeate channel was discussed.
Słowa kluczowe
Rocznik
Strony
271–--280
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Department of Chemical and Process Engineering Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Coker D.T., Allen T., Freeman B.D., Fleming G.K., 1999. Nonisothermal model for gas separation hollow-fiber membranes. AIChE J., 45, 1451–1468. DOI: 10.1002/aic.690450709.
  • 2. Davis R.A., 2002. Simple gas permeation and pervaporation membrane unit operation models for process simulators. Chem. Eng. Techn., 25, 717–722. DOI: 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO; 2-N.
  • 3. Geschke O., Klank H., Telleman P. (Eds.), 2004. Microsystem engineering of Lab-on-a-Chip devices. John Wiley& Sons.
  • 4. Giddings J.C., Seager S.L., 1962. Method for the rapid determination of diffusion coefficients. Theory and application. Ind. Eng. Chem. Fund., 1, 277–283. DOI: 10.1021/i160004a009.
  • 5. Ingham J., Dunn I.J., Heinzle E., Prenosil J.E., Snape J.B., 2008. Chemical engineering dynamics: An introduction to modelling and computer simulation. 3rd edition, John Wiley & Sons.
  • 6. Katoh T., Tokumura M., Yoshikawa H., Kawase Y., 2011. Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module: Nonideal mixing flows in permeate and residue sides using the tanks-in-series model. Sep. Purif. Technol., 76, 362–372. DOI: 10.1016/j.seppur.2010.11.006.
  • 7. Makaruk A., Harasek M., 2009. Numerical algorithm for modelling multicomponent multipermeator systems. J. Membr. Sci., 344, 258–265. DOI: 10.1016/j.memsci.2009.08.013.
  • 8. Marriott J., Sørensen E., 2003. A general approach to modelling membrane modules. Chem. Eng. Sci., 58, 4975–4990. DOI: 10.1016/j.ces.2003.07.005.
  • 9. Mazzotti M., Gazzani M., Milella F., Gabrielli P., 2016. Membrane separations. Rate controlled separation process. ETH, Zürich. Available at: https://www.ethz.ch/content/dam/ethz/special-interest/mavt/process-engineering/separation-processes-laboratory-dam/documents/education/rcs%20notes/Membrane_course.pdf
  • 10. Perrin J.E., Stern S.A., 1985. Modeling of permeators with two different types of polymer membranes. AIChE J., 31, 1167–1177. DOI: 10.1002/aic.690310715.
  • 11. Pfister M., Belaissaoui B., Favre E., 2017. Membrane gas separation processes from wet postcombustion flue gases for carbon capture and use: A critical reassessment. Ind. Eng. Chem. Res., 56, 591–602. DOI: 10.1021/acs.iecr.6b03969.
  • 12. Rautenbach R., Dahm W., 1986. Simplified calculation of gas-permeation hollow-fiber modules for the separation of binary mixtures. J. Membr. Sci, 28, 319–327. DOI: 10.1016/S0376-7388(00)82042-6.
  • 13. Scholz M., Harlacher T., Melin T., Wessling M., 2012. Modeling gas permeation by linking nonideal effects. Ind. Eng. Chem. Res., 52, 1079–1088. DOI: 10.1021/ie202689m.
  • 14. Shindo Y., Hakuta T., Yoshitome H., Inoue H., 1985. Separation of three-component gas mixture by means of a microporous glass membrane with co-current flow. J. Chem. Eng. Jpn., 18, 485–489. DOI: 10.1252/jcej.18.485.
  • 15. Szwast M., 2017a. Gas permeation through the polymeric membrane – fluid behavior in the permeate channel. Materials of Comsol Conference, Rotterdam. Available at: https://www.comsol.de/paper/gas-permeation-throughthe-polymeric-membrane-fluid-behavior-in-the-permeate-cha-54591.
  • 16. Szwast M., 2017b. Manufacturing and characterization of membranes for industrial gas separation and modeling of selected process conducted with such membranes. Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw (in Polish).
  • 17. Szwast M., Szwast Z., 2015. A mathematical model of membrane gas separation with energy transfer by molecules of gas flowing in a channel to molecules penetrating this channel from the adjacent channel. Chem. Process Eng., 36, 151–169. DOI: 10.1515/cpe-2015-0012.
  • 18. Thundyil M.J., KorosW.J., 1997. Mathematical modeling of gas separation permeators—for radial crossflow, countercurrent, and cocurrent hollow fiber membrane modules. J. Membr. Sci., 125, 275–291. DOI: 10.1016/S0376-7388(96)00218-9.
  • 19. Walawender W.P., Stern S.A., 1972. Analysis of membrane separation parameters. II. Counter-current and concurrent flow in a single permeation stage. Sep. Sci.,7, 553–584. DOI: 10.1080/00372367208056054.
  • 20. Wang R., Liu S.L., Lin T.T., Chung T.S., 2002. Characterization of hollow fiber membranes in a permeator using binary gas mixtures. Chem. Eng. Sci., 57, 967–976. DOI: 10.1016/S0009-2509(01)00435-3.
  • 21. Weller S., Steiner W.A., 1950. Separation of gases by fractional permeation through membranes. J. Appl. Phys., 21, 279–283. DOI: 10.1063/1.1699653.
  • 22. Zimmerman C.M., KorosW.J., 1999. Polypyrrolones for membrane gas separations. I. Structural comparison of gas transport and sorption properties. J. Polym. Sci., Part B: Polym. Phys., 37, 1235–1249. DOI: 10.1002/(SICI)1099-0488(19990615)37:12<1235::AID-POLB5>3.0.CO;2-J.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08ae09cb-0cb7-4223-a090-eed15f46f82a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.