PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization and evaluation of alkali-pretreated Paeonia ostii seed coats as adsorbent for the removal of MB from aqueous solution

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel efficient adsorbent, alkali-pretreated Paeonia ostii seed coats (AP-PSC), was investigated for the removal of methylene blue (MB) dye from solution. Orthogonal array design was applied to optimize the process parameters viz. alkali concentration, liquid-solid ratio (LSR) and pretreatment time. The results revealed that the optimal pretreatment conditions were at 0.8% (w/w) NaOH with LSR of 0.35 L g–1  treating for 50 min. Equilibrium and kinetic studies indicated that Langmuir isotherm and Pseudo-second-order models described the experimental data well. The maximum adsorption capability was of 368.2 mg g–1  for MB at 25°C. Thermodynamic parameters suggested that the AP-PSC adsorption process was physical, endothermic and spontaneous. Furthermore, the adsorption process was influenced by several interactive mechanisms, including ion-exchange, as well as Van der Waals forces and hydrogen bonds that occur concomitantly. It was concluded that AP-PSC may be potential as an efficient adsorbent to remove MB from solution.
Rocznik
Strony
29--36
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
  • School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, P. R. China
autor
  • School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
autor
  • School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, P. R. China
autor
  • School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
autor
  • School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
Bibliografia
  • 1 . Sewu, D.D., Boakye, P. & Woo, S.H. (2017). Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. J. Bioresour. Technol. 224, 206–213. DOI: 10.1016/j.biortech.2016.11.009.
  • 2 . Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpää, M. & Bhatnagar, A. (2017). A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae-Effect of pretreatment. J. Chem. Eng. 307, 435–446. DOI: 10.1016/j.cej.2016.08.093.
  • 3. Hethnawi, A., Nassar, N.N., Manasrah, A.D. & Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. J. Chem. Eng. 320, 389–404. DOI: 10.1016/j.cej.2017.03.057.
  • 4. Bhatnagar, A., Sillanpää, M. & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification-A review. J. Chem. Eng. 270, 244–271. DOI: 10.1016/j.cej.2015.01.135.
  • 5. Anastopoulos, I., Karamesouti, M., Mitropoulos, A.C. & Kyzas, G.Z. (2017). A review for coffee adsorbents. J. Mol. Liq. 229, 555–565. DOI: 10.1016/j.molliq.2016.12.096.
  • 6. Cai, J., He,Y., Yu, X., Banks, S.W., Yang,Y., Zhang, X., Yu, Y., Liu, R. & Bridgwater, A.V. (2017). Review of physicochemical properties and analytical characterization of lignocellulosic biomass. J. Renew. Sust. Energ. Rev. 76, 309–322. DOI: 10.1016/j.rser.2017.03.072.
  • 7. Ummartyotin, S. & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. J. Renew. Sust. Energ. Rev. 62, 654–664. DOI: 10.1016/j.rser.2016.04.066.
  • 8. Dai, Y., Zhang, D. & Zhang, K. (2016). Nitrobenzene-adsorption capacity of NaOH-modified spent coffee ground from aqueous solution. J. Taiwan Inst. Chem. Eng. 68, 232–238. DOI: 10.1016/j.jtice.2016.08.042.
  • 9. Messaoudi, N.E., Khomri, M.E., Bentahar, S., Dbik, A., Lacherai, A. & Bakiz, B. (2016). Evaluation of performance of chemically treated date stones: Application for the removal of cationic dyes from aqueous solutions. J. Taiwan Inst. Chem. Eng. 67, 244–253. DOI: 10.1016/j.jtice.2016.07.024.
  • 10. Zhang, X.X., Shi, Q.Q., Ji, D., Niu, L.X., Zhang, Y.L. (2017). Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Mountan DC.) species native to China. Food Res. Int. 97, 141–148. DOI: 10.1016/j.foodres.2017.03018.
  • 11. Ma, L., Cui,Y., Cai, R., Liu, X., Zhang, C. & Xiao, D. (2015). Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob. J. Bioresour. Technol. 180, 1–6. DOI: 10.1016/j.biortech.2014.12.078.
  • 12. Sun,Y.G., Ma,Y.L., Wang, L.Q., Wang, F.Z., Wu, Q.Q. & Pan, G.Y. (2015). Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. J. Carbohydr. Polym. 117, 486–493. DOI: 10.1016/j.carbpol.2014.09.066.
  • 13. Mohapatra, S., Dandapat, S.J. & Thatoi, H. (2017). Physicochemical characterization, modelling and optimization of ultrasono-assisted acid pretreatment of two Pennisetum sp. using Taguchi and artificial neural networking for enhanced delignification. J. Environ. Manage 187, 537–549. DOI: 10.1016/j.jenvman.2016.09.060.
  • 14. Gandolfi , S., Ottolina, G., Consonni, R., Riva, S. & Patel, I. (2014). Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. J. ChemSusChem 7(7), 1991–1999. DOI: 10.1002/cssc.201301396.
  • 15. Hameed, B.H. & Ahmad, A.A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164(2–3), 870–875. DOI: 10.1016/j.jhazmat.2008.08.084.
  • 16. Bulgariu, D. & Bulgariu, L. (2016). Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies. J. Clean. Prod. 112(5), 4525–4533. DOI: 10.1016/j.jclepro.2015.05.124.
  • 17. Ooi, J., Lee, L.Y., Hiew, B.Y.Z., Thangalazhy-Gopakumar, S., Lim, S.S. & Gan, S. (2017). Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azodye: Equilibrium, kinetic and thermodynamic studies. J. Bioresour. Technol. 245, 656–664. DOI: 10.1016/j.biortech.2017.08.153.
  • 18. Sayyadi, S., Ahmady-Asbchin, S., Kamali, K. & Tavakoli, N. (2017). Thermodynamic, equilibrium and kinetic studies on biosorption of Pb2+ from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. J. Taiwan Inst. Chem. Eng. 80, 701–708. DOI: 10.1016/j.jtice.2017.09.005.
  • 19. Sarat Chandra, T., Mudliar, S.N., Vidyashankar, S., Mukherji, S., Sarada, R., Krishnamurthi, K. & Chauhan,V.S. (2015). Defatted algal biomass as a non-conventional low-cost adsorbent: Surface characterization and methylene blue adsorption characteristics. J. Bioresour. Technol. 184, 395–404. DOI: 10.1016/j.biortech.2014.10.018.
  • 20. Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G. & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. J. Chem. Eng. 307, 264–272. DOI: 10.1016/j.cej.2016.08.089.
  • 21. Zhang, H., Li, A., Sun, J. & Li, P. (2013). Adsorption of amphoteric aromatic compounds by hyper-cross-linked resins with amino groups and sulfonic groups. J. Chem. Eng. 217, 354–362. DOI: 10.1016/j.cej.2012.12.001.
  • 22. Kumari, S., Chauhan, G.S. & Ahn, J.H. (2016). Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. J. Chem. Eng. 304, 728–736. DOI: 10.1016/j.cej.2016.07.008.
  • 23. Dai, H., Huang, Y. & Huang, H. (2018). Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. J. Carbohydr. Polym. 185, 1–11. DOI: 10.1016/j.carbpol.2017.12.073.
  • 24. Saini, J., Garg,V.K. & Gupta, R.K. (2018). Removal of Methylene Blue from aqueous solution by Fe3O4 @Ag/SiO2 nanospheres: Synthesis, characterization and adsorption performance. J. Mol. Liq. 250, 413–422. DOI: 10.1016/j.molliq.2017.11.180.
  • 25. Cheng, M., Zeng, G., Huang, D., Lai, C., Liu,Y., Zhang, C., Wang, R., Qin, L., Xue,W., Song, B., Ye, S. & Yi, H. (2018). High adsorption of methylene blue by salicylic acid–methanol modified steel converter slag and evaluation of its mechanism. J. coll. Interf. Sci. 515, 232–239. DOI: 10.1016/j.jcis.2018.01.008.
  • 26. Guo, H., Bi, C., Zeng, C., Ma,W., Yan, L., Li, K. & Wei, K. (2018). Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J. Mol. Liq. 249, 629–636. DOI: 10.1016/j.molliq.2017.11.096.
  • 27. E L.-Mekkawi, D.M., Selim, Mohamed M. & Ibrahim, Fatma A. (2018). Innovative synthesis of black zeolites-based kaolin and their adsorption behavior in the removal of methylene blue from water. J. Mater. Sci. 53(5), 3323–3331. DOI: 10.1007/s10853-017-1744-8.
  • 28. Z hao, Q., Zhu, X. & Chen, B. (2018). Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. J. Chem. Eng. 334, 1119–1127. DOI: 10.1016/j.cej.2017.11.053.
  • 29. O lusegun, S.J., de Sousa Lima, L.F. & Mohallem, N.D.S. (2018). Enhancement of adsorption capacity of clay through spray drying and surface modification process for wastewater treatment. J. Chem. Eng. 334, 1719–1728. DOI: 10.1016/j.cej.2017.11.084.
  • 30. L i, Z., Wang, G., Zhai, K., He, C., Li, Q. & Guo, P. (2018). Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. J. Colloid. Surface. A. 538, 28–35. DOI: 10.1016/j.colsurfa.2017.10.046.
  • 31. Nasrullah, A., Bhat, A.H., Naeem, A., Isa, M.H. & Danish, M. (2018). High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. J. Int. Biol. Macromol. 107, 1792–1799. DOI: 10.1016/j.ijbiomac.2017.10.045.
  • 32. Han, R., Zhang, L., Song, C., Zhang, M., Zhu, H. & Zhang, L. (2010). Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. J. Carbohydr. Polym. 79(4), 1140–1149. DOI: 10.1016/j.carbpol.2009.10.054.
  • 33. Konicki, W., Aleksandrzak, M., Moszynski, D. & Mijowska, E. (2017). Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. J. Coll. Interf. Sci. 496, 188–200. DOI: 10.1016/j.jcis.2017.02.031.
  • 34. Patra, S., Roy, E., Madhuri, R. & Sharma, P.K. (2016). Agar based bimetallic nanoparticles as high-performance renewable adsorbent for removal and degradation of cationic organic dyes. J. Ind. Eng. Chem. 33, 226–238. DOI: 10.1016/j.jiec.2015.10.008.
  • 35. Esfandiyari, T., Nasirizadeh, N., Ehrampoosh, M.H. & Tabatabaee, M. (2017). Characterization and absorption studies of cationic dye on multi walled carbon nanotube–carbon ceramic composite. J. Ind. Eng. Chem. 46, 35–43. DOI: 10.1016/j.jiec.2016.09.031.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08a92839-5ccb-4f4d-8fc9-50ee869e062d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.