PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the possibility of implementing small retention reservoirs in terms of the need to increase water resources

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena możliwości realizacji zbiorników małej retencji w kontekście potrzeby zwiększania zasobów wodnych
Języki publikacji
EN
Abstrakty
EN
Currently, due to reduced water resources, there is a need to build reservoirs in Poland. Reservoirs perform important economic, natural and recreational functions in the environment, improve water balance and contribute to flood protection. In the construction of reservoirs, it is necessary to consider not only hydrological issues related to water quantity, but also its quality, silting, and many other factors. Therefore, the physiographic, hydrological, hydrochemical, and hydrogeological conditions of the projected reservoirs have to be taken into account to limit the potential negative effects of decisions to build them. In order to assess the suitability of eight projected small water retention reservoirs (to increase water resources in the Barycz River catchment in Lower Silesia and Greater Poland provinces, this article takes into account hydrological indicators (efficiency of the reservoir, operation time, dependence on the intensity of silting, and flood hazard indicator), water quality (phosphorus load and nitrogen load), hydrogeological conditions (type of geological substratum for the reservoir basin and filtration losses), and safety of the reservoir dam. To develop a theoretical model describing the regularities between the indicators, multivariate statistical techniques were used, including the Principal Component Analysis (PCA) and the Factor Analysis (FA). In order to assess the reservoirs, a synthetic indicator was developed to compare the reservoirs with each other in relation to the conditions. The Cluster Analysis (CA) was used for typological classification of homogeneous locations of projected small retention reservoirs. Own research procedure for identification of the most advantageous water reservoirs, with the use of multivariate statistical techniques, may be used as a tool supporting decision making in other facilities intended for implementation in provincial projects of small retention.
PL
Obecnie w Polsce z powodu zmniejszonych zasobów wodnych istnieje potrzeba budowy zbiorników wodnych. Pełnią one w środowisku ważne funkcje gospodarcze, przyrodnicze, rekreacyjne, poprawiają bilans wodny i przyczyniają się do ochrony przeciwpowodziowej. Budując zbiornik wodny, oprócz zagadnień hydrologicznych związanych z ilością wody, należy wziąć pod uwagę jakość wody, która będzie retencjonowana w zbiorniku, jego zamulenie oraz szereg innych aspektów. Bardzo ważna jest więc analiza uwarunkowań zbiorników planowanych, w tym fizjograficznych, hydrologicznych, hydrochemicznych i hydrogeologicznych, aby ograniczyć potencjalne negatywne skutki podejmowania decyzji o budowie takich obiektów. W celu oceny możliwości realizacji ośmiu planowanych zbiorników małej retencji wodnej w kontekście potrzeby zwiększania zasobów wodnych na obszarze zlewni Barycz w województwie dolnośląskim i wielkopolskim w niniejszym artykule uwzględniono wskaźniki hydrologiczne (sprawność zbiornika, czas eksploatacji ze względu na intensywność zamulania, wskaźnik potencjalnego zagrożenia powodzią), jakości wody (obciążenie ładunkiem fosforu i azotu), hydrogeologiczne (rodzaj podłoża geologicznego pod czaszę zbiornika wodnego i straty filtracyjne) oraz bezpieczeństwa zapory zbiornika. Do opracowania teoretycznego modelu, opisującego prawidłowości zachodzące pomiędzy tymi wskaźnikami, wykorzystano wielowymiarowe techniki statystyczne takie jak: Principal Component Analysis (PCA) i Factor Analysis (FA). W celu oceny planowanych zbiorników w aspekcie najbardziej korzystnych do realizacji opracowano syntetyczny wskaźnik, który umożliwił porównanie tych zbiorników w odniesieniu do rozpatrywanych uwarunkowań. Wykonano również z zastosowaniem Cluster Analysis (CA) typologiczną klasyfikację planowanych zbiorników małej retencji wodnej pod względem jednorodnych lokalizacji na analizowanym obszarze. Zaproponowana w niniejszej pracy autorska procedura badawcza identyfikacji najkorzystniejszych, spośród planowanych do realizacji, zbiorników wodnych z zastosowaniem wielowymiarowych technik statystycznych, może posłużyć jako narzędzie wspomagające podejmowanie decyzji przy innych obiektach planowanych do realizacji w wojewódzkich planach rozwoju małej retencji.
Rocznik
Strony
80--100
Opis fizyczny
Bibliogr. 106 poz., tab., wykr.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
  • University of Opole, Institute of Socio-Economic Geography and Spatial Management, Poland
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
  • Institute of Environmental Engineering Polish Academy of Sciences in Zabrze
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
Bibliografia
  • 1. Adamski, W., Gortat, J., Leśniak, E. & Żbikowski, A. (1986). Small water construction for the villages. Arkady, Warszawa. (in Polish)
  • 2. Bănăduc, D., Razvam, V., Marić, S., Dobre, A. & Bănăduc, A. (2018). Technical Solutions to Mitigate Shifting Fish Fauna Zones Impacted by Long Term Habitat Degradation in the Bistra Mărui River - Study Case, Transylvanian Review of Systematical and Ecological Research, 20(3), DOI: 10.2478/trser-2018-0021.
  • 3. Bartnik, A. & Jokiel, P. (2007). Maximum outflows and flood indexes for European rivers, Water Management/Gospodarka Wodna, (1), pp. 28-32. (in Polish)
  • 4. Baumgartner, M.T., Piana, P.A., Baumgartner, G. & Gomes, L.C. (2019). Storage or Run-of-river Reservoirs: Exploring the Ecological Effects of Dam Operation on Stability and Species Interactions of Fish Assemblages, Environmental Management, DOI: 10.1007/s00267-019-01243-x.
  • 5. Bierman, P. & Steig, E.J. (1996). Estimating rates of denudation using cosmogenic isotope abundances in sediment, Earth Surface Processes and Landforms, 21(2). DOI: 10.1002/(SICI)1096-9837(199602)21:2<125::AID-ESP511>3.0.CO;2-8.
  • 6. Bogdał A., Kowalik, T. & Witoszek, K. (2015). Impact of the Goczałkowicki reservoir on changes in water quality in the Vistula River. Inżynieria Ekologiczna, 45, pp. 2015, 124-134, DOI: 10.12912/23920629/60605. (in Polish)
  • 7. Bogdał A., Policht-Latawiec, A. & Kołdras, S. (2015). Changes of Water Quality Indices with Depth at Drinking Water Intake from Dobczyce Reservoir. Annual Set the Environment Protection, 17, pp. 1239-1258. (in Polish)
  • 8. Boyacioglu, H. (2006). Surface water quality assessment using factor analysis, Water SA, 32(3), pp. 389-393, DOI: 10.4314/wsa.v32i3.5264.
  • 9. Boyacioglu, H. (2014). Spatial differentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach, Archives of Environmental Protection, 40(1), 41-50, DOI: 10.2478/Aep-2014-0002.
  • 10. Boyacioglu, H., & Boyacioglu, H. (2008). Water pollution sources assessment by multivariate statistical methods in the Tahtali Basin. Turkey, Environmental Geology, 54(2), 275-282, DOI 10.1007/s00254-007-0815-6.
  • 11. Bus, A. & Mosiej, J. (2018). Water Quality Changes of Inflowing and Outlawing Water from Complex of Niewiadoma Reservoirs Located at Cetynia River, Annual Set The Environment Protection, 20, pp. 1793-1810. (in Polish)
  • 12. Byczkowski, A. (1999). Hydrology, vol. 1, ed. 2. SGGW Publishing House, Warszawa. (in Polish)
  • 13. Carlson, R.E. & Simpson, J. (1996). A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society.
  • 14. Chłopek, D. (2018). Multi-criteria analysis of the possibility of implementing small water reservoirs in the Barycz river basin. Diploma thesis, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, pp. 65. (in Polish)
  • 15. Chongxun, M., Fanggui, L. Mei, Y., Rongyong, M. & Guikai, S. (2008), Risk analysis for earth dam overtopping, Water Science and Engineering, 1(2), pp. 76-87, DOI: 10.3882/j.issn.1674-2370.2008.02.008.
  • 16. Ciepielowski, A. (1999). Basics of water management, Publisher SGGW, Warszawa, pp. 328. (in Polish)
  • 17. Cupak, A., Wałęga, A. & Michalec, B. (2017). Cluster analysis in determination of hydrologically homogeneous regions with low flow, Acta Scientiarum Polonorum Formatio Circumiectus, 16(1), pp. 53-63, DOI: http://dx.doi.org/10.15576/ASP.FC/2017.16.1.53.
  • 18. Cymes, I. & Glińska-Lewczuk, K. (2016). The use of Water Quality Indices (WQI and SAR) for multipurpose assessment of water in dam reservoirs, J. Elem., 21(4): 1211-1224, DOI: 10.5601/jelem.2016.21.2.1200.
  • 19. Czamara, W., Czamara, A. & Wiatkowski, M. (2008). The use of pre-dams with plants filters to improve water quality in storage reservoirs, Archives of Environmental Protection, 34, pp. 79-89.
  • 20. Degoutte, G. (ed.). (2002). Small dams, guidelines for design, construction and monitoring. Cemagref Éditions and ENGREF (France), with French Committee on Large Dams.
  • 21. Degórski, M. (2018). Circular economy - a new approach in the understanding of the human-environment relationship, [in:] Theoretical and application challenges of contemporary geography socio-economic, P. Churski (ed.), Studia Komitetu Przestrzennego Zagospodarowania Kraju, Polska Akademia Nauk, Tom CLXXXIII, Warszawa, pp. 27-35. (in Polish)
  • 22. Dodds, W.K. & Smith, V.H. (2016). Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6(2), pp. 155-164, DOI: 10.5268/IW-6.2.909.
  • 23. Dziewoński, Z. (1973). Agricultural storage reservoirs, PWN Publisher. (in Polish)
  • 24. DZMiUW Wrocław (2006). Small water retention program in the Lower Silesian Voivodship. Study prepared by Agricultural University of Wroclaw - Hydrological Process Modeling Center. (in Polish)
  • 25. EPA - Environmental Protection Agency (1974). An approach to a relative trophic index system for classifying lakes and reservoirs, Working Paper, 24.
  • 26. FitzHugh, T.W., & Vogel, R.M. (2010). The impact of dams on flood flows in the United States, River Research and Applications, 27(10), pp. 1192-1215, DOI: 10.1002/rra.1417.
  • 27. Gaupp, F., Hall, J., & Dadson, S. (2015). The role of storage capacity in coping with intra- and inter-annual water variability in large river basins, Environmental Research Letters, 10(12), 125001, DOI: 10.1088/1748-9326/10/12/125001.
  • 28. GIOŚ (2018) Corine Land Cover - Land Cover/Land Use Database. Chief Inspectorate for Environmental Protection (GIOŚ).
  • 29. Grimard, Y. & Jones, H.G. (2011). Trophic Upsurge in New Reservoirs: A Model for Total Phosphorus Concentrations, Canadian Journal of Fisheries and Aquatic Sciences, 39(11), pp. 1473-1483, DOI: 10.1139/f82-199.
  • 30. Gruss, Ł. & Wiatkowski, M. (2018). Rainfall models in small catchments in the context of hydrologic and hydraulic assessment of watercourses, ECO CHEM ENG A. 25(1): 19-27, DOI:10.2428/ecea.2018.25(1)2.
  • 31. Ignatius, A.R., & Rasmussen, T.C. (2016). Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA, Journal of Hydrology: Regional Studies, 8, pp. 145-161, DOI: 10.1016/j.ejrh.2016.08.005.
  • 32. Junakova, N. & Junak, J. (2017). Sustainable Use of Reservoir Sediment through Partial Application in Building Material, Sustainability, 9(5), DOI: 10.3390/su9050852.
  • 33. Kajak, Z. (2001). Hydrobiology - limnology. Inland water ecosystems, PWN Publisher, Warszawa. (in Polish)
  • 34. Kałuża, T., Zawadzki, P., Mądrawski, J., Stasik, R. (2017). Analysis of impact of Strużyna reservoir modernization on groundwater level, Acta. Sci. Pol., Formatio Circumiectus, 16(3), 153-169. (in Polish)
  • 35. Karimian, E., Modares, R., Soltani S., Eslamian S., Ostad-Ali-Askari, K., Vijay, P.S & Dalezios, N.R. (2018). Multivariate and Cluster Analysis of Hydrologic Indices: A Case Study of Karun Watershed, Khuzestan Province, Iran, International Journal of Research Studies in Science, Engineering and Technology, 5(2), pp. 4-13.
  • 36. Kasperek, R., Wiatkowski, M. & Czamara, W. (2007). Assessment of sediment transport flowing into the Mściwojów water reservoir, Infrastructure and Ecology of Rural Areas, 4, 2, pp. 69-76. (in Polish)
  • 37. Kasperek, R., Mokwa, M. & Wiatkowski, M. (2013). Modelling of pollution transport with sediment on the example of the Widawa River, Archives of Environmental Protection, 39(2), pp. 29-43, DOI: 10.2478/aep-2013-0017.
  • 38. Khaba, L. & Griffiths, J.A. (2017). Calculation of reservoir capacity loss due to sediment deposition in the Muela reservoir, Northern Lesotho, International Soil and Water Conservation Research, 5(2), pp. 130-140, DOI: 10.1016/j.iswcr.2017.05.005.
  • 39. Kubicz, J., Lochynski, P., Pawełczyk, A. & Karczewski, M. (2021). Effects of drought on environmental health risk posed by groundwater contamination, Chemosphere, 263, https://doi.org/10.1016/j.chemosphere.2020.128145.
  • 40. Kostecki, M. Tytła, M. Kernert, J. & Stahl, K. (2017). Temporal and spatial variability in concentrations of phosphorus species under thermal pollution conditions of a dam reservoir - the Rybnik Reservoir case study, Archives of Environmental Protection, 43(3), pp. 42-52, DOI: 10.1515/aep-2017-0022.
  • 41. Kowalewski, Z. (2008). Actions for small water retention undertaken in Poland. J. Water Land Dev. No. 12, pp. 155-167.
  • 42. Kundzewicz, Z.W., Ulbrich, U. & Brücher, T. et al. (2005). Summer Floods in Central Europe - Climate Change Track?, Natural Hazards, 36, 165-189, https://doi.org/10.1007/s11069-004-4547-6.
  • 43. KZGW (National Water Management Authority) 2017. Hydrographic Map of Poland. Available online: https://danepubliczne.gov.pl/dataset/komputerowa-mapa-podzialu-hydrograficznego-polski (accessed on: 05.12.2017).
  • 44. Laacha, G. & Blöschl, G. (2006). A comparison of low flow regionalisation methods - catchment grouping, Journal of Hydrology, 323, pp. 193-214, DOI: 10.1016/j.jhydrol.2005.09.001.
  • 45. Łabaz, B., Bogacz, A. & Kabała, C. (2014). Anthropogenic transformation of soils in the Barycz valley - conclusions for soil classification, Soil Science Annual, 65(3/2014), pp. 103-110, DOI: 10.1515/ssa-2015-0001.
  • 46. Larinier, M. (2008). Fish Passage Experience at Small-Scale Hydro-Electric Power Plants in France, Hydrobiologia, 609(1), DOI:10.1007/s10750-008-9398-9.
  • 47. Lewis, S.E., Bainbridge, Z.T., Kuhnert, P.M., Sherman, B.S., Henderson, B., Dougall, C., Cooper, M. & Brodie, J.E. (2013). Calculating sediment trapping efficiencies for reservoirs in tropical settings: A case study from the Burdekin Falls Dam, NE Australia, Water Resources Research, 49(2), pp. 1017-1029, DOI: 10.1002/wrcr.20117.
  • 48. Lindsey, C.R., Ghanashym, N., Spycher, N., Fairley, J.P., Dobson, P., Wood, T., McLing, T. & Conrad, M. (2018). Cluster analysis as a tool for evaluating the exploration potential of Known Geothermal Resource Areas, Geothermics, 72, pp. 358-370, DOI: 10.1016/j.geothermics.2017.12.009.
  • 49. Ling, T.Y., Soo, C.-L., Liew, J.-J., Nyanti, L., Sim, S.F. & Grinang, J. (2017). Application of multivariate statistical analysis in evaluation of surface river water quality of a tropical river, J. Chemother., pp. 1-13, DOI: 10.1155/2017/5737452.
  • 50. Madeyski M., Michalec, B. & Tarnawski, M. (2008). Silting of small water reservoirs and quality of sediments, Infrastructure and Ecology of Rural Areas, 11. (monography; in Polish)
  • 51. Maloney, T.E. (1979). Lake and Reservoir Classification Systems. United States Environmental Protection Agency.
  • 52. Mansanarez, V., Westerberg, I.K., Lam, N. & Lyon, S.W. (2019). Rapid Stage‐Discharge Rating Curve Assessment Using Hydraulic Modeling in an Uncertainty Framework, Water Resources Research, 55(11), DOI: 10.1029/2018WR024176.
  • 53. Marcinkowski, P., Piniewski, M., Kardel, I., Szczęśniak, M., Benestad, R.E., Srinivasan, R., Ignar, S. & Okruszko, T. (2017). Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland, Water, 9, 156, DOI: 10.3390/w9030156.
  • 54. Markowska, J., Szalińska, W., Dąbrowska, J. & Brząkała, M. (2019). The concept of a participatory approach to water management on a reservoir in response to wicked problems, J. Environ Manage. 2020;259:109626, DOI: 10.1016/j.jenvman.2019.109626.
  • 55. Melo, D.C.D., Scanlon, B.R., Zhang, Z., Wendland, E. & Yin, L. (2016). Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil, Hydrology and Earth System Sciences, 20, pp. 4673-4688, DOI: 10.5194/hess-20-4673-2016.
  • 56. MGMiŻG, (2019a), Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances, OJ 2019, item 2149. (in Polish)
  • 57. MGMiŻG, (2019b), Ministry of Maritime Economy and Inland Navigation. Assumptions for the Program for Combating Water Shortage for 2021-2027 with a perspective to 2030. Project, Warszawa, pp. 19. (in Polish)
  • 58. Miąsik M., Koszelnik P. & Bartoszek L. (2014). Trophic water assessment of the small retention reservoirs Blizne and Cierpisz in the Podkarpacie Region (Subcarpathian Province), Limnol. Rev., 14(4), pp. 181-186, DOI 10.1515/limre-2015-0008.
  • 59. Michalec, B., Wałęga, A., Cupak, A., Michalec, A. & Połoska-Wróblel, A. (2016). Determination of the flow rate curve in the back section of water reservoirs in Zesławice, Acta Scientiarum Polonorum Formatio Circumiectus, 15(1), pp. 113-124.
  • 60. Mioduszewski, W. (2014). Water management in rural areas in the light of new challenges, Wiadomości Melioracyjne i Łąkarskie, 1, pp. 2-9. (in Polish)
  • 61. Mioduszewski, W. (2014). Small (natural) water retention in rural areas. J. Water Land Dev., No. 20 (I-III), pp. 19-29.
  • 62. Mosisch, T.D. & Arthington, A. (2006). The impacts of power boating and water skiing on lakes and reservoirs, Lakes & Reservoirs Research & Management, 3(1), pp. 1-17, DOI: 10.1111/j.1440-1770.1998.tb00028.x.
  • 63. Moss, B. (2007). The art and science of lake restoration, Hydrobiologia, 581, pp. 15-24, DOI: 10.1007/s10750-006-0524-2.
  • 64. Myronidis, D., Fotakis, D., Ioannou, K. & Sgouropoulou, K. (2018). Comparison of ten notable meteorological drought indices on tracking the effect of drought on streamflow, Hydrological Science Journal, DOI: https://doi.org/10.1080/02626667.2018.1 554285.
  • 65. Myronidis, M. & Ivanova, E. (2020). Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds, Water,12, 784, DOI: 10.3390/w12030784.
  • 66. National Water Policy Project (2011) until 2030 (including the stage of 2016), Ministry of the Environment, National Water Management Authority, Warszawa, pp. 74. (in Polish)
  • 67. O’Keeffe, J., Marcinkowski, P., Utratna, M., Piniewski, M., Kardel, I., Kundzewicz, Z.W. & Okruszko, T. (2019). Modelling Climate Change’s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland, Water, 11, 2191, DOI: 10.3390/w11102191.
  • 68. Özdemir, Ö. (2016). Application of multivariate statistical methods for water quality assessment of Karasu Sarmisakli Creeks and Kizilirmak River in Kayseri, Turkey, Polish Journal of Environmental Studies, 25 (3), 1149.
  • 69. Panek, T. & Zwierzchowski, J. (2013). Statistical methods of multivariate comparative analysis. Theory and applications, SGH Publishing House, Warszawa, pp. 400. (in Polish)
  • 70. Paruch, A.M., Mæhlum, T. & Robertson, L. (2015). Changes in Microbial Quality of Irrigation Water Under Different Weather Conditions in Southeast Norway. Environ. Process. 2, pp. 115-124, https://doi.org/10.1007/s40710-014-0054-2.
  • 71. Pazdro, Z. & Kozerski, B. (1990). General hydrogeology, Geological Publishing, Edition 4th, Warszawa. (in Polish)
  • 72. Pejman, A.H., Nabi Bidhendi, G.R., Karbassi, A.R., Mehrdadi, N. & Esmaeili Bidhendi, M. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques, International Journal of Environmental Science and Technology, 6, 3, pp. 467-476, DOI: 10.1007/BF03326086.
  • 73. Przybyła, C., Kozdroj, P. & Sojka, M. (2015). Application of Multivariate Statistical Methods in Water Quality Assessment of River-reservoirs Systems (on the Example of Jutrosin and Pakoslaw Reservoirs, Orla Basin), Annual Set the Environment Protection, 17(2), pp. 1125-1141.
  • 74. Rao, A.R. & Srinivas, V.V. (2008). Regionalization of Watersheds. An approach based on cluster analysis. Springer, New York.
  • 75. Sakamoto, M. (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth, Archiv für Hydrobiologie, 62, pp. 1-28.
  • 76. Sand-Jensen, K., Bruun, H.H. & Baastriup-Spohr, L. (2016). Decade-long time delays in nutrient and plant species dynamics during eutrophication and re‐oligotrophication of Lake Fure 1900-2015, Journal of Ecology, 105(3), DOI: 10.1111/1365-2745.12715.
  • 77. Schiozer, D.J, Ligero, E.L. & Santos, J.A.M. (2004). Risk assessment for reservoir development under uncertainty, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), DOI: 10.1590/S1678-58782004000200014.
  • 78. Shrestha, S. & Kazama, F. (2007). Assessment of Surface Water Quality using Multivariate Statistical Techniques: A Case Study of the Fuji River Basin, Japan, Environmental Modelling & Software, 22(4), 464-475, DOI: 10.1016/j.envsoft.2006.02.001.
  • 79. Singh, K.P., Malik, A., Singh V.K., Mohan, D. & Sinha, S. (2005). Chemometric Data Analysis of Pollutants in wastewater - a Case Study, Analytica Chimica Acta, 550, 82-91. Available online: https://eurekamag.com/pdf/004/004406870.pdf (accessed on January 2020), DOI: 10.1016/j.aca.2004.10.043.
  • 80. Sojka, M., Jaskuła, J., Siepak, M. (2019). Article Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk, Water, 11, 56, DOI: 10.3390/w11010056.
  • 81. Stathis, D., Myronidis, D. (2009). Principal component analysis of precipitation in Thessaly region (Central Greece), Global NEST Journal, Vol 11 (No 4), pp. 467-476, Available online: https://journal.gnest.org/sites/default/files/Journal%20Papers/467-476_534_Stathis_11_4.pdf (accessed on January 2020), DOI: 10.30955/gnj.000534.
  • 82. StatSoft, Electronic Statistics Textbook. 2011. Available on: https://www.statsoft.pl/textbook/stathome.ht ml (accessed on January 2020).
  • 83. Szatten, D., Habel, M., Pellegrini, L. & Maerker, M. (2018). Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas, Water, 10, 1681, DOI: 10.3390/w10111681.
  • 84. Szoszkiewicz K., Wicher-Dysarz J., Sojka, M. & Dysarz, T. (2016). Assessment of hydraulic, hydrological and physicochemical factors affecting vegetation development in dam reservoir with separated inlet zone - stare miasto (Central Poland) reservoir as a case study, Fresenius Environmental Bulletin, vol. 25, No.(8), pp. 2772-2783 .
  • 85. Tallar, R. & Suen, J.-P. (2017). Measuring the Aesthetic Value of Multifunctional Lakes Using an Enhanced Visual Quality Method, Water, 9(4), DOI: 10.3390/w9040233.
  • 86. Tokarczyk-Dorociak, K. & Gębarowski, S. (2011). Implementation of Water Framework Directive in Barycz river basin, Infrastruktura i Ekologia Terenów Wiejskich, 10, pp. 15-27. (in Polish)
  • 87. Tokarczyk, T. & Szalińska, W. (2018). Drought hazard assessment in the process of drought risk management, Acta Sci. Pol., Formatio Circumiectus, 18(3), 217-229, DOI: org/10.15576/ASP.FC/2018.17.3.217.
  • 88. Varol, M., Gökot, B., Bekleyen, A. & Şen, B. (2012). Water quality assessment and apportionment of pollution sources of Tigris river (Turkey) using multivariate statistical techniques - a case study, River Research and Applications, 28, pp. 1428-1438, DOI:10.1002/rra.1533.
  • 89. Vollenweider, R.A. (1965). Material and ideas for a hydrochemistry of water, Memorie dell’Istituto Italiano di Idrobiologia, 19, pp. 213-286. (in Italian)
  • 90. Vollenweider, R.A. (1992). The relationship between phosphorus load and eutrophication response in Lake Vanda, Physical and Biogeochemical Processes in Antarctic Lakes, 59, DOI: 10.1029/AR059p0197.
  • 91. Voza, D., Vuković, M., Takić, L.J., Nikolić, D.J. & Mladenović-Ranisavljević, I. (2015) Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia, Archives of Environmental Protection, 41(4), pp. 96-103, DOI:https://doi.org/10.1515/aep-2015-004410.1515/aep-2015-0044.
  • 92. Waligórski B., Sojka M., Jaskuła J. & Korytowski M. (2018). Analysis of the use of selected reservoirs in the Wielkopolska province. Ann. Warsaw Univ. of Life Sci. - SGGW, Land Reclam. 50 (4), 2018, DOI: 10.2478/sggw-2018-0029.
  • 93. Wiatkowska, B. & Słodczyk, J. (2018). Spatial Diversity of Environmental Governance in the Aspect of Sustainable Development of the Polish-Czech Border Area, [in:] Development and administration of border areas of the Czech Republic and Poland. Support for sustainable development, VŠB – Technical University of Ostrava, pp. 292-301. WOS:000476581800037.
  • 94. Wiatkowski, M. & Paul, L. (2009). Surface water quality assessment in the Troja river catchment in the context of Włodzienin reservoir construction, Polish Journal of Environmental Studies, vol. 18, 5, pp. 923-929.
  • 95. Wiatkowski, M. & Czerniawska-Kusza, I. (2009). Use of Jedlice preliminary reservoir for water protection of Turawa dam reservoir. Oceanological and Hydrobiological Studies, vol. XXXVIII, 1, pp. 83-91.
  • 96. Wiatkowski, M. (2010). Impact of the small water reservoir Psurów on the quality and flows of the Prosna river, Archives of Environmental Protection, vol. 36, 3, pp. 83-96.
  • 97. Wiatkowski, M., Rosik-Dulewska, C., Kuczewski, K. & Kasperek, R. (2013). Water Quality Assessment of Włodzienin Reservoir in the First Year of Its Operation, Annual Set The Environment Protection, 15(3), pp. 2666-2682. (in Polish)
  • 98. Wiatkowski M., Rosik-Dulewska, C. & Kasperek R. (2015). Inflow of Pollutants to the Bukówka Drinking Water Reservoir from the Transboundary Bóbr River Basin, Annual Set The Environment Protection, 17, pp. 316-336.
  • 99. Wiatkowski, M. & Rosik-Dulewska, C. (2015). Water management problems at the Bukówka drinking water reservoir’s cross-border basin area in terms of its established functions, J. Ecol. Eng., 16(2), pp. 52-60, DOI: 10.12911/22998993/1857.
  • 100. Wiatkowski, M., Gruss, Ł., Tomczyk, P. & Rosik-Dulewska, C. (2018). Analysis of water quality of the Stobrawa river at the location of the Walce small retention reservoir, Annual Set The Environment Protection, Volume/Tom 20, pp. 184-202.
  • 101. Wiatkowski, M. & Wiatkowska, B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis, Archives of Environmental Protection, 45, 1, pp. 26-41, DOI: 10.24425/aep.2019.126339.
  • 102. Wilk, P. & Grabarczyk, A. (2018). The effect of selected inviolable flow characteristics on the results of environmental analysis using the example of river absorption capacity, Archives of Environmental Protection, 44(2), pp. 14-25, DOI: 10.24425/119702.
  • 103. WIOŚ (Regional Inspectorate for Environmental Protection) (2011, 2013, 2015, 2016). Report on the state of the environment in the Dolnośląskie and Wielkopolskie voivodships, Wrocław, Poznań.
  • 104. Wu, J., Liu, Z., Yao, H., Chen, X., Chen, X., Zheng, Y., & He, Y. (2018). Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought, Journal of Hydrology, 563, pp. 726-736, DOI: 10.1016/j.jhydrol.2018.06.053.
  • 105. WZMiUW (Provincial Board of Land Reclamation and Water Facilities) Poznań (2015). Program małej retencji wodnej w województwie wielkopolskim na lata 2016-2030. Study prepared by Bureau for Land Reclamation and Environmental Engineering Biprowodmel Ltd. (in Polish)
  • 106. Żmuda R., Szewrański S., Kowalczyk T., Szarawarski Ł. & Kuriata M. (2009). Landscape alteration in view of soil protection from water erosion - an example of the Mielnica watershed, Journal of Water and Land Development, 13a, pp. 161-175.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08a88ee6-181f-4865-a74d-137af1756c5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.