PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure of Commercial Purity Titanium Subjected to Complex Loading by the Kobo Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Observations of refined microstructure of Commercial Purity titanium for applications in biomedical devices has been carried out. Refinement of titanium microstructure has been performed in process with complex strain scheme. Materials investigated in this work were: Commercial Purity titanium grade 2 and grade 4. Samples of as received materials were subjected to plastic deformation in complex loading process of extrusion combined with oscillation twisting (KoBo extrusion). Both types of samples were deformed in single step of extrusion, in temperature of 450 °C, with extrusion ratio 19.14 and 12.25 for grade 2 titanium and grade 4 titanium, respectively. Initial mean grain diameter for both types of materials was approximately 30 μm. Samples were investigated by means of crystal orientation microscopy. In both cases considerable microstructure refinement has been observed. Microstructures of deformed samples are heterogenous and consist of both elongated and fine equiaxed grains. Elongated grains (lamellae) are separated by High Angle Grain Boundaries and feature internal structure with subgrains and dislocation walls. Grain refinement is stronger in material with higher extrusion ratio and mean grain diameter in this case is equal to 1.48 μm compared to 8.07 μm. in material with lower extrusion ratio. Mean misorientation angle (24° and 27° for grade 4 and grade 2 titanium) indicates high fraction of HAGBs in microstructures of KoBo deformed samples. Misorientation fluctuations inside grains have been analyzed and distinct curvature of crystal lattice have been observed. Hardness of samples after plastic deformation increased from 174.6±3.4 and 234.9±3.5 to 205.0±3.2 and 251.2±2.2 for titanium grade 2 and grade 4 respectively.
Twórcy
autor
  • Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 reymonta str., 30-059 Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 reymonta str., 30-059 Kraków, Poland
  • Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 reymonta str., 30-059 Kraków, Poland
Bibliografia
  • [1] A. Palmquist, O. M. Omar, M. Esposito, J. Lausmaa, P. Thomsen, J. R. Soc. Interface 7, 515 (2010)
  • [2] D. Cadosch, E. Chan, O.P. Gautschi, L. Filgueira: J. Biomed. Mater. Res. A 91, 1252 (2009)
  • [3] Y. Okazaki, S. Rao, Y. Ito, T. Tateishi, Biomaterials;19, 1197 (1998)
  • [4] A. Hernández-Sánchez, P. Tejada-González, M. Arteta- Jiménez, Eur. J. Clin. Nutr. 2013.
  • [5] Y. T. Zhu, J. Y. Huang, J. Gubicza, T. Ungár, Y .M. Wang, E. Ma, R. Z. Valiev, J. Mater. Res. 18(8), 1908 (2003)
  • [6] A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, A. K. Mukherjee, Scr. Mater. 45(7), 747 (2001)
  • [7] W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur, K. J. Kurzydlowski, J. Mater. Process. Technol. 205, 173 (2008)
  • [8] S. Zherebtsov, W. Lojkowski, A. Mazur, G. Salishchev, Mater. Sci. Eng., A 527, 5596 (2010)
  • [9] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok, J. Biomed. Mater. Res. A 90, 1239 (2009)
  • [10] R. Z. Valiev, I. P. Semenova, E. Jakushina, V. V. Latysh, H. Rack, T. C. Lowe, J. Petruželka, L. Dluhoš, D. Hrušák, J. Sochová, Mater. Sci. Forum; PART 1:49-54, 584 (2008)
  • [11] A. Korbel, W. Bochniak, European Patent No. 0711210, U.S. Patent No. 573959.
  • [12] A. Korbel, W. Bochniak, P. Ostachowski, L. Blaz, Metall. Mater. Trans. A, 42A, 2881 (2011)
  • [13] K. Pieła, L. Błaż, M. Jaskowski, Arch. Metal. Mater. 58, 683 (2013)
  • [14] A. Korbel, J. Pospiech, W. Bochniak, A. Tarasek, P. Ostachowski, J. Bonarski, Int. J. Mat. Res. 102, 464 (2011)
  • [15] K. Sztwiertnia, J. Kawałko, M Bieda, K. Berent, Arch. Metal. Mater. 58, 157 (2013)
  • [16] L. Wang, Y. C. Wang, A. P. Zhilyaev, A. V. Korznikov, Shu Kui Li, E. Korznikova, T. G. Langdon, Scr. Mater. 77, 33 (2014)
  • [17] Y. J. Chen, Y. J. Li, J. C. Walmsley, S. Dumoulin, S. S. Gireesh, S. Armada, P. C. Skaret, H. J. Roven, Scr. Mater., 64, 904 (2011)
  • [18] C. Hyun, J. Lee, H. Kim, Res. Chem. Intermediat., 36, 629 (2010)
  • [19] Y. J. Chen, Y. J. Li, J. C. Walmsley, S. Dumoulin, P. C. Skaret, H. J. Roven, Mat. Sci. Eng., A 527, 789 (2010)
  • [20] F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena 2nd ed, Pergamon, Oxford, United Kingdom (2004) pp. 438
  • [21] X. Zhao, X. Yang, X. Liu, X. Wang, T.G. Langdon, Mat. Sci. Eng., A, 527, 6335 (2010)
  • [22] K. Topolski, W. Pachla, H. Garbacz, J. Mater. Sci. 48, 4543 (2013)
  • [23] R. J. Contieri, Zanotello, R. Caram, Mat. Sci. Eng., A 527, 3994 (2010)
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08a699f0-bf30-446a-adb3-49f47ba398d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.