PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of Metallic Gold Nanoparticles in a Colloidal State by Artificial Vision

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gold nanoparticles in their colloidal state have different colors, and the equipment for their characterization, such as UV-Vis spectrophotometers, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), has high costs. The research aimed to characterize metallic gold nanoparticles by artificial vision based on the color of the samples in the colloidal state. The sensor used for the sampling was a 50 MP triple-lens camera with the optical image stabilization (OIS) of a smartphone. The Vision Acquisition and Vision Assistant blocks in the NI LabVIEW platform were used to implement an artificial vision device. The camera interface was used to identify the color of each of the 10 samples of colloidal gold nanoparticles produced by the YAG laser and chemical reduction in 15 ml of deionized water. The characterization consisted of the determination of the size and concentration of the gold nanoparticles based on their color, which ranged from pink to red wine. As a result, the artificial Vision device adequately identified the color of the metallic gold nanoparticles in a colloidal state with a certainty of more than 95%, allowing the nanoparticles to be adequately characterized. Therefore, it is concluded that artificial Vision adequately characterized gold nanoparticles’ wavelength, absorbance, diameter, and concentration.
Twórcy
  • Universidad Nacional de Huancavelica, Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
  • Universidad Nacional de Huancavelica, Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
  • Universidad Nacional de Huancavelica, Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
Bibliografia
  • 1. Ajey, H., Mardiati, R., Kamelia, L. 2023. Automatic presence system with face recognition based smartphone camera using the haar cascade method. EasyChair Preprint No. 10527.
  • 2. Arsalane, A., Klilou, A., Barbri, N.E., Tabyaoui, A. 2020. Artificial vision and embedded systems as alternative tools for evaluating beef meat freshness. IEEE 6th International Conference on Optimization and Applications (ICOA), 1–6. https://doi.org/10.1109/ICOA49421.2020.9094503
  • 3. Avantes. 2018. Espectrómetro UV-Vis-NIR – Ava Spec-ULS2048x64-EVO. https://www.medicalexpo.com/prod/avantes/product-104219-950813.html
  • 4. Balarezo, S., Arias, X., Espín, K., Aquino, M., Novillo, G. 2022. Simulation system of a tomato sorting process using artificial vision BT - emerging research in intelligent systems. M. Botto-Tobar, H. Cruz, A. Díaz Cadena, & B. Durakovic (Eds.), Springer International Publishing, pp. 135–146.
  • 5. Carbajal-Morán, H., Rivera-Esteban, J.M., Aldama-Reyna, C.W., Mejía-Uriarte, E.V. 2022. Functionalization of gold nanoparticles for the detection of heavy metals in contaminated water samples in the province of Tayacaja. Journal of Ecological Engineering, 23(9), 88–99. https://doi.org/10.12911/22998993/151745
  • 6. Fawwaz, F., Dunggio, B., Wulandari, P., Rahyadi, I., Astharini, D. 2020. Vision application of LabVIEW: IGUI for face and pattern detection in real time. 2020 International Conference on Information Management and Technology (ICIMTech), 438–442. https://doi.org/10.1109/ICIMTech50083.2020.9211282
  • 7. Ganchovska, V., Krasteva, I. 2022. Converting color to grayscale image using LabVIEW. International Conference Automatics and Informatics (ICAI), 320–323. https://doi.org/10.1109/ICAI55857.2022.9960062
  • 8. Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G. 2007. Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Analytical Chemistry, 79(11), 4215–4221.
  • 9. Hua, Z., Yu, T., Liu, D., Xianyu, Y. 2021. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors and Bioelectronics, 179, 113076. https://doi.org/https://doi.org/10.1016/j.bios.2021.113076
  • 10.Iqbal, M., Usanase, G., Oulmi, K., Aberkane, F., Bendaikha, T., Fessi, H., Zine, N., Agusti, G., Errachid, E.S., Elaissari, A. 2016. Preparation of gold nanoparticles and determination of their particles size via different methods. Materials Research Bulletin, 79, 97–104. https://doi.org/10.1016/j.materresbull.2015.12.026
  • 11. Issa, A., Aqel, M. O.A., Zakout, B., Daqqa, A.A., Amassi, M., Naim, N. 2019. 5-DOF robot manipulator modelling, development and automation using LabVIEW, Vision Assistant, and Arduino. International Conference on Promising Electronic Technologies (ICPET), 124–129. https://doi.org/10.1109/ICPET.2019.00030
  • 12. Korgin, A., Ermakov, V., Kilani, L.Z. 2019. Automation and Processing Test Data with LabVIEW Software. IOP Conference Series: Materials Science and Engineering, 661(1), 12073. https://doi.org/10.1088/1757-899X/661/1/012073
  • 13. Kumari, S., Singh, V., Singh, D. 2024. Nanoparticle synthesis advancements and their application in wastewater treatment: A comprehensive review. Current Chemistry Letters, 13(1), 31–40. https://doi.org/10.5267/j.ccl.2023.9.002
  • 14. Liu, X.Y., Wang, J.Q., Ashby, C.R., Zeng, L., Fan, Y.F., Chen, Z.S. 2021. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today, 26(5), 1284–1292. https://doi.org/https://doi.org/10.1016/j.drudis.2021.01.030
  • 15. Mohandas, N. 2020. A nano-tale of the vivid colours of gold. https://researchmatters.in/sciqs/ nano-tale-vivid-colours-gold
  • 16. Montalvan, L.T., Jordan, E., Tubón, E., Carrillo, S., Heredia, E., Salazar, F. 2022. Smart control and monitoring system of a robotic station operating with motion control and artificial vision. RISTI – Revista Iberica de Sistemas e Tecnologias de Informacao, 2022(E49), 222–236. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136284758&partnerID=40&md5=fb97abb4c752a4d899df76ef39d51007
  • 17. Nag, O.K., Muroski, M.E., Hastman, D.A., Almeida, B., Medintz, I.L., Huston, A.L., Delehanty, J.B. 2020. Nanoparticle-mediated visualization and control of cellular membrane potential: Strategies, progress, and remaining issues. ACS Nano, 14(3), 2659–2677. https://doi.org/10.1021/acsnano.9b10163
  • 18. NI. 2023. Using the Vision Assistant Express VI - NI. https://www.ni.com/docs/en-US/bundle/nivision-assistant-help/page/expressvi_howto.html
  • 19. Ordoñez-Avila, J.L., Maldonado, E.R.T., Magomedov, I. 2022. Water generation based on condensation controlled by gray scale and artificial vision. International Conference on Information, Control, and Communication Technologies (ICCT), 1–5. https://doi.org/10.1109/ICCT56057.2022.9976774
  • 20. Paramasivam, G., Sanmugam, A., Palem, V.V, Sevanan, M., Sairam, A.B., Nachiappan, N., Youn, B., Lee, J.S., Nallal, M., Park, K.H. 2024. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. International Journal of Biological Macromolecules, 254. https://doi.org/10.1016/j.ijbiomac.2023.127904
  • 21. Quantel. 2019. Q-smart 450 Pulsed Nd:YAG Laser, 213 to 1064 nm, 8 to 450 mJ, product - photonic solutions, UK. https://www.photonicsolutions.co.uk/product-detail.php?prod=6345
  • 22. Serafino, S.E., Cicerchia, L.B., Pérez, G., Adorno, S., Balmer, A. 2020. Detection and counting of lemons using artificial vision and tracking techniques for real time harvest estimation. XLVI Latin American Computing Conference (CLEI), 496–502. https://doi.org/10.1109/CLEI52000.2020.00064
  • 23. Sivaranjani, S., Velmurugan, S., Kathiresan, K., Karthik, M., Gunapriya, B., Gokul, C., Suresh, M. 2021. Visualization of virtual environment through LabVIEW platform. Materials Today: Proceedings, 45, 2306–2312. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.559
  • 24. Strem Chemicals. 2011. Spherical Gold Nanoparticles Kit (30-90 nm). https://www.azonano.com/article.aspx?ArticleID=2875
  • 25. Torrisi, L., Cutroneo, M., Torrisi, A., Di Marco, G., Fazio, B., Silipigni, L. 2020. IR ns pulsed laser irradiation of Polydimethylsiloxane in vacuum. Vacuum, 177, 109361. https://doi.org/https://doi.org/10.1016/j.vacuum.2020.109361
  • 26. Torskal Nanoscience, 2022. Standard gold nanoparticles introduction. https://www.torskal.com/product/standard-gold-nanoparticles-introduction-pack/
  • 27. Weichelt, R., Ye, J., Banin, U., Eychmüller, A., Seidel, R. 2019. DNA-mediated self-assembly and metallization of semiconductor nanorods for thefabrication of nanoelectronic interfaces. Chemistry - A European Journal, 25(38), 9012–9016. https://doi.org/10.1002/chem.201902148
  • 28. Wisultschew, C., Otero, A., Portilla, J., Torre, E. 2019. Artificial vision on edge IoT devices: a practical case for 3D data classification. XXXIV Conference on Design of Circuits and Integrated Systems (DCIS), 1–7. https://doi.org/10.1109/DCIS201949030.2019.8959857
  • 29. Zhang, Y., Li, Y., Gu, X., Liu, H., Zhang, Y., Hu, W. 2019. Laser spot image acquisition and processing based on LabVIEW. Optik, 185, 505–509. https://doi.org/https://doi.org/10.1016/j.ijleo.2018.12.051
  • 30. Zhou, Z., Li, J., Yuan, Y., Gao, L., He, P., Luo, G., Xie, Y., Zhang, J., Xu, G., Liao, X., Zhang, S. 2023. Size controlled, structural characterization and applications of glucopyranoside-based N-heterocyclic carbenes stabilized gold nanoparticles. Journal of Molecular Liquids, 386. https://doi.org/10.1016/j.molliq.2023.122543
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08a45e84-a486-4745-bee0-0ff28454819f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.