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Abstract

The Game of Life (Life) is one of the most famous cellular automata. The main purpose

of this article is to present a network representation of Life as an application of the ap-

proach proposed in our previous papers. This network representation has made it possible

to investigate Life using a network theory. Some well-known Life patterns are illustrated

by using the corresponding clustered networks. The visualization of Life’s rest state re-

veals the underlying tension as a complex network. The typical network parameters show

the characteristics of Life as a Wolfram’s class IV rule. In particular, the in-degree dis-

tribution of the derived network from a Life’s rest state shows a scale-free nature, which

could be related to the evidence of self-organized criticality.

1 Introduction

Conway’s Game of Life [1], or simply Life, is

one of the most famous cellular automata (CA),

which are characterized by a number of cells on

a lattice grid and a synchronous update of all cell

states according to a local rule. Because Life’s rule

was carefully determined to balance the cells’ ten-

dencies to die and to be born, many complex pat-

terns and activities can emerge [2]–[4].

The original concept of CA was introduced

by von Neumann and Ulam for modeling biologi-

cal self-reproduction [5]. Since their introduction,

CA have been used in many disciplines including

physics, computer science, biology, and social sci-

ences [5]–[9]. Subsequently, S. Wolfram systemat-

ically investigated the dynamical behavior of one-

dimensional cellular automata (1D CA) and pro-

posed that the rules can be grouped into four classes

of complexity: homogeneous (class I), periodic

(class II), chaotic (class III), and complex (class IV)

[10]. Life is not only a member of class IV, but it is

also one of the simplest examples of what we call

self-organizing systems or self-organized criticality
(SOC) [11]. The concept of SOC was proposed by

Bak, Tang and Wiesenfeld [12]. They discovered

that the critical behavior can be emerged sponta-

neously from simple local interactions without any

fine tunings of variable parameters.

In our previous papers [13, 14], we proposed

a network representation that made it possible to

describe the dot patterns of binary CA by network

graphs. Each network has characteristic link pat-

terns and symmetries derived from the dynamical

behavior of the corresponding CA rule. For ex-

ample, additive rules such as rule 90 of elemen-

tary cellular automata (ECA) and rule T 42 of 5-

neighbor totalistic cellular automata (5TCA) pro-

vide geometric links that are independent of initial

configurations. Our network representation also has

an extra symmetry, which we call the “diminished-

radix complement”; this symmetry leads to some

new pairings of CA rules. We have also discussed

the dynamical properties of ECA and 5TCA rules

using some structural parameters of the network

theory. The results of efficiency [15, 16] and cluster

coefficients (CCs) [17, 18] showed that the topo-

logical nature of networks could be related to the

dynamical behavior of CA rules: the network con-

nectivity between cells can represent the existing

rate of class III-like chaotic patterns and class II-

like fixed or periodic patterns. Class IV rules have

intermediate and complex activities with long tran-

sient times, called the “edge of chaos” [19]. We
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have also observed the scale-free nature of rule T 20

network. Sample graphs of all non-trivial networks

of ECA and 5TCA are provided in [14].

In this article, we propose a network representa-

tion of Life as an application of our approach, which

is enhanced for its application to two-dimensional

(2D) CA and for the visualization of the networks

of Life patterns. A pattern’s oscillation and mo-

tion can be represented by the sequential changes in

a corresponding clustered network. The visualiza-

tion of Life’s rest state reveals the long range ten-

sion between cells as a complex network. We also

discuss some structural parameters of the Life net-

work. The efficiency/CC-all-component (Call) chart

shows that the behavior of Life is similar to that of

the other class IV rules of ECA and 5TCA. As the

most important result, we have found a scale-free

degree distribution of the derived network from a

Life’s rest state, which indicates that the scale-free

nature of the network representation is an evidence

of a fractal structure and SOC.

Section 2 is devoted to extending our network

representation to binary 2D CA. Network links are

obtained as a visualization of one-cell perturbation

effects through a fixed time interval. The directed

links imply the directions of the spreading effects

of a pattern change. In Section 3, we illustrate some

well-known patterns by the corresponding clustered

networks. This visualization shows not only the

current state of a pattern but also the pattern’s po-

tential variability. A Life’s rest state is also visual-

ized. The networks of the well-known patterns are

mutually connected and configure a complex net-

work. In Section 4, we discuss the results of the

network parameters of Life and 1D CA rules. An

efficiency/Call chart illustrates the characteristic fig-

ures reflecting the global and local connection prop-

erties of the derived networks. The network of a

Life’s rest state has a scale-free degree distribution.

A fractal structure of the network is also discussed.

2 Notation and Definitions

2.1 2D Cellular Automata

Here we consider 2D CA to be dynamical sys-

tems that consist of a 2D regular grid of cells, each

characterized by a finite number of states. Cells

are updated synchronously in discrete time steps ac-

cording to a local rule (CA rule). Each cell is con-

nected to its r local neighbors on four-sides, where

r is referred to as the radius. Thus, each cell has

(2r + 1)2 neighbors, including itself. The state of

a cell at the next time step is determined from the

current states of the neighboring cells:

xi, j(t +1) = fR(xi−r, j−r(t), ...,xi−r, j+r(t), · · · ,
xi, j−r(t), ...,xi, j(t), ...,xi, j+r(t), · · · ,
xi+r, j−r(t), ...,xi+r, j+r(t)), (1)

where xi, j(t) denotes the state of cell (i, j) at time

t, and fR denotes the transition function of a rule.

The term configuration refers to an assignment of

states to all cells for a given time; a configuration

is denoted by x(t) = ∑(N−1,N−1)
(i, j)=(0,0) xi, j(t)ei, j, where

ei, j represents the (i, j)-th unit vector that satisfies

ei, j • ek,l = δ(i, j),(k,l) (inner product), and N indi-

cates the size of a square grid. Thus, the time

transition of configuration x(t) can be denoted by

x(t + 1) = f R(x(t)), where f R represents a map-

ping on the configuration space {x}N with periodic

boundary conditions (torus grid). After t time steps,

the configuration of cells obtained from an initial

configuration ϕ ≡ x(0) is given by

x(t,ϕ) = f t
R(ϕ). (2)

In this article, our discussions are focused on

Life, which is the most famous binary and outer-
totalistic CA rule with r = 1, where outer-totalistic

implies that the rule function depends on the sum of

the states of the outer neighbors (i.e., all cells except

the center cell). If we denote the sum of the eight

cell states neighboring a cell (i, j) as σ8(i, j), the

Life rule function fL can be described as follows:

fL(xi, j(t),σ8(i, j))=

⎧⎪⎨
⎪⎩

0 for σ8 = 1 or 4 ∼ 8

xi, j(t) for σ8 = 2

1 for σ8 = 3.
(3)

2.2 Network Representation

Our network representation is derived from the

one-cell perturbation of all cells. The time evolu-

tion of each perturbation defines the directed links

between the cells. Although the moment of adding

perturbations is fixed at the initial time t = 0 in our
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previous papers, we introduce a parameter t0 as a

moment when all cells are perturbed in order to de-

scribe the changing patterns on the basis of the time

dependence of the derived networks. If the config-

uration at t0 is denoted by ϕ0 ≡ x(t0), a one-cell

perturbation of cell (i, j) , denoted by Δi, jϕ0, co-

incides with ei, j in binary CA. After an interval of

time steps tI , we have

Δi, jx(t,ϕ) ≡ f tI
R (ϕ0 +Δi, jϕ0)+ f tI

R (ϕ0) (mod 2)

= Δi, j f tI
R (ϕ0) (4)

= AR(tI,ϕ0)• ei, j, (5)

where t = t0 + tI is the total time steps, and

AR(tI,ϕ0)≡
(N−1,N−1)

∑
(k,l)=(0,0)

Δk,l f tI
R (ϕ0)ek,l (6)

is the result of gathering all perturbation effects af-

ter the interval tI . AR(tI,ϕ0) has an N2 ×N2 matrix

representation,

[AR]
k,l
i, j = (Δk,l f tI

R (ϕ0))i, j. (7)

If N ≡{ei, j} denotes a set of nodes, then each com-

ponent (Δk,l f tI
R (ϕ0))i, j defines a one-to-one map-

ping, i.e., N → N . Therefore, we can call

(Δk,l f tI
R (ϕ0))i, j a directed link from node (k, l)

to node (i, j). Then, (N ,N ,Δk,l f tI
R (ϕ0)) defines

a directed graph that connects node (k, l) to the

other nodes. Taking into consideration all the

graphs, we define a network representation of CA

as (N ,N ,AR(tI,ϕ0)); the matrix representation of

AR(tI,ϕ0) is an adjacency matrix.

It is important to determine the appropriate

length of the interval tI . In the previous papers, tI
was set to [N/2r], where [n] represents the maxi-

mum integer not exceeding n, in order to ensure that

each cell has causal relationships with all the other

cells and to avoid repetitions. If a relatively small

value were set, such links could not have existed

with their lengths longer than tIr and if a relatively

large value were considered, the results would be

affected by the lattice size N. Therefore, [N/2r] is a

reasonable choice when we consider the time evo-

lution of all the cells from the random initial con-

figurations. A choice of small tI , however, is appro-

priate for targeting localized patterns or an interme-

diate growth of networks, as shown in the following

section.

3 Visualization of Life

3.1 Network of Life Patterns

We present some network examples of well-

known patterns in Life, including the simplest static

patterns, “still lifes” (Figures 1 and 2); repeating

patterns, “oscillators” (Figures 3-5); and patterns

that moving across the grid, “spaceships” (Figure

6). In these figures, the blue and the white squares

represent the active and the inactive cells, respec-

tively. Directed links are drawn with a gradient

color from red to blue. Red denotes that the link

is exiting the node (out-edge), and blue denotes that

the link is entering the node (in-edge).

Block

Boat

Tub tI:odd tI:even

Pond

Figure 1. Still lifes, whose networks stop growing

at some tI value. Tub depends on tI parity.
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Loaf

Ship

Beehive

Figure 2. Still lifes, whose networks grow with tI .
Networks were obtained at tI = 20.

Among still lifes, the networks of Figure 1 do

not grow further if the interval tI is sufficiently large

to construct their networks. Tub depends only on

the parity of tI . On the other hand, the links in the

networks of Figure 2 still grow with tI . We observe

that the networks of Figure 2 are surrounded by

blue edges (in-edges). Because the outer in-edges

indicate the spreading of the perturbations of the

inner cells to the outer area, if a large value of tI
is taken, the blue edges may spread to wide outer

areas. These blue edges imply creation of some

spaceships and can connect still lifes existing in a

rest state as discussed in the next subsection.

Blinker tI:odd tI:even

Figure 3. Blinker and oscillating networks (period

2), which are independent of t0 and depend only on

tI parity.

Figure 4. Toad and oscillating networks (period 2)

at tI = 20.

Figure 5. Beacon and oscillating networks (period

2) at tI = 20.

Figures 3-5 show the networks of the famous

two-period oscillators. Blinker (Figure 3) has two

series of networks depending only on the parity of

tI . The most famous spaceship is Glider (Figure 6)

with a period of four. Its networks show the direc-

tion of movement because the area where blue links

converge indicates the current position of the pat-

tern and the area where the red links converge indi-

cates the tI past position of the pattern.
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Figure 6. Glider and moving networks (period 4)

at tI = 12.

3.2 Network of Rest State

The initial time t0 introduced in Section 2 leads

us to visualizing the network of the rest state of

Life. If t0 is set to a sufficiently large value, the

configuration state derived from a randomly gener-

ated original state will become a rest state, in which

there exist only still lifes and oscillators. When the

rest state is visualized by the network representa-

tion, we notice a large difference between the rest

state and the null state. As mentioned in the previ-

ous subsection, Life patterns generally have extend-

ing networks with the interval tI . This implies that

the isolated patterns are not isolated but are underly-

ing networks that potentially connect many patterns

together. Figure 7 shows a sample Life network in

a rest state.

Figure 7. Life’s rest state and its network with

N = 51 and tI = 25.

The network is almost connected and complex.

It describes the long range tension of the rest state as

the “sand-pile model” discussed in Bak et al. [12].

4 Network Parameters

We now focus on some structural parameters of

the Life network. Figure 8 shows the t0-dependence

of efficiency and Call of networks derived from Life

as well as typical ECA and 5TCA rules, where t0 is

the moment when all cells are perturbed.

Figure 8. Efficiency/Call graph of Life and some

ECA and 5TCA networks. The points of each

trajectory correspond to the values at t0 = 0−400

at 50 intervals and each point is averaged over ten

networks obtained from pseudo-randomly

generated initial configurations with N = 101

(101×101 total cells), tI = 50 for Life and

N = 3201 , tI = 1600 for ECA and 5TCA. The

arrows on the trajectories indicate the direction of

the t0 increase.

Figure 9. Enlarged efficiency/Call graph of T 20

and T 40 networks with a log-log scale.

There is an obvious difference between the tra-

jectories of class II rules (28 and T 40) and those

of class III rules (30, T 10, and T 30). The for-

mer rapidly fall into fixed points located in the area

where both efficiency and Call are small, whereas

the latter randomly fluctuate in the area where both

the parameters have large values. These activi-
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ties correspond to periodic or fixed attractors and

chaotic attractors, respectively. Life and the re-

maining trajectories have similar complex figures

with a gradual decrease in efficiency. The rule T 20

trajectory is also similar, as illustrated in Figure 9.

Because Life and the remaining rules are known

as candidates for class IV rules, this chart serves

as evidence to prove the validity of our approach.

When we focus on Life’s trajectory, the fluctuating

states have a certain amount of efficiency and Call

values. These results indicate that the rest state of

Life has somewhat long distance connections and

local clusters, which correspond to the results of the

visualization of a rest state discussed in Section 3.2.

Figure 10 shows the in- and out-degree distri-

butions of Life networks.

(a) In-degree distribution.

(b) Out-degree distribution.

Figure 10. Non-averaged (a) in-degree and (b)

out-degree distributions of Life networks obtained

from ten pseudo-randomly generated initial

configurations with N = 101. t0 and tI are set to

10000 and 50, respectively.

In particular, the in-degree distribution shows a

scale-free nature. Here we set t0 to a sufficiently

large value in order to set the configuration that will

be perturbed to an almost rest state. The difference

between in- and out-degree can be interpreted as

follows: The in-degree of a cell is the number of

cells whose perturbations affect the cell after an in-

terval tI . On the other hand, the out-degree of a cell

is the number of cells whose states are changed by

the effect of the cell’s perturbation. For example,

Beehive has a characteristic out-degree distribution

(Figure 11). That is, the out-degree of the perturbed

cell strongly depends on the local patterns. On the

other hand, the in-degree is a result of gathering the

effects around the cell. The larger the value of the

interval tI , the higher is the randomness of the loca-

tions of linked cells; hence, the in-degree distribu-

tion is more statistical than the out-degree distribu-

tion.

Figure 11. In- and out-degree distributions of

Beehive at tI = 50.

Moreover, if the scale-free nature exists, we ex-

pect to observe a fractal structure of the Life net-

work. As noted at the end of Section 2, intermedi-

ate networks can be obtained by setting tI to values

smaller than [N/2]. In fact, Figure 12 shows a simi-

lar power-law behavior even at the smaller tI values.

The scale-free nature of Life has already been

reported by Bak, Chen and Creutz [11], and sup-

ported by Alstrn et al. [20]. They have estimated

the size and lifetime of an “avalanche”, which is

defined as an evolutionary change caused by a one-

cell perturbation in a rest state. Our approach is

very close to theirs and the relation between their

results and the Life network will be cleared in the

future.
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(a) At tI = 10. (b)At tI = 20.

(c)At tI = 30. (d)At tI = 40.

Figure 12. In-degree distributions of Life networks

for different intervals tI , which are non-averaged

data obtained from ten pseudo-randomly generated

initial configurations with N = 101. t0 and tI are set

to 10000 and 10−40 at 10 intervals, respectively.

5 Conclusion

Our network representation serves as a novel

means of visualizing Life. Well-known Life pat-

terns exhibit characteristic network graphs. There

exist two types of networks: ones that grow with

time and the others that do not. Block and Blinker

are examples of the latter type of networks. Os-

cillators and spaceships are described by sequential

changes in the corresponding clustered networks.

Because directed links between cells illustrate po-

tential variability, such as in an infection map or

a contour map, the effects of a perturbation will

spread along the links. Glider’s network implies

its direction of movement. Not only individual pat-

terns but also Life’s rest state made from still lifes

and oscillators has been visualized. The network of

Life’s rest state reveals the existence of underlying

high and long-range tension.

The dynamical activities of Life have been stud-

ied using structural network parameters. The candi-

dates of Wolfram’s class IV rules, including Life,

have shown similar trajectories in an efficiency/Call

chart. As the most important result, we have found

a scale-free degree distribution of the derived net-

work from Life’s rest state. As in the case of the

sand-pile model discussed in Bak et al. [12], the

underlying tension of Life’s rest state has a scale-

free nature [11, 20]. The occurrence of an avalanche

from a tiny perturbation is the necessary conse-

quence of the power-law structure of a rest state.

Now, we conjecture that the scale-free nature of the
network representation is evidence of SOC. Further

investigation into this conjecture will be presented

in a future work.

The network representation is a visualization

of a connecting structure and its dynamics. The

dot patterns of CA rules are illustrated by network

graphs which have characteristic connection pat-

terns derived from the dynamical behavior of the

corresponding CA rules. As stated in this article,

Life is a very good case study for learning how to

use the network representation as a tool for under-

standing complex systems.
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