PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of laser and electrochemical interaction in sequential and hybrid micromachining processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the research and development trends in nowadays manufacturing technology is integration of different manufacturing techniques into single machine tool. In the first part of the paper possibilities, goals, reasons and advantages of thermal and electrochemical interaction have been characterized. As literature review indicates such a connection can be realized as sequential or hybrid machining. The second part of the paper focuses on detailed analysis of laser assisted electrochemical process. For this purpose, the mathematical model of workpiece heating has been developed. Based on obtained results and literature review possibilities of technical realization and potential application have been discussed.
Rocznik
Strony
305--314
Opis fizyczny
Bibliogr. 32, wykr., rys., fot.
Twórcy
  • Institute of Production Engineering, Cracow University of Technology, 37 Jana Pawła II Ave., 31-864, Kraków, Poland
Bibliografia
  • [1] D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining”, CIRP Annals - Manufacturing Technology 55 (2), 745-768 (2006).
  • [2] F. Vollertsen, D. Biermann, H. Hansen, I. Jawahir, and K. Kuzman, “Size effects in manufacturing of metallic components”, CIRP Annals - Manufacturing Technology 58 (2), 566-587 (2009).
  • [3] K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, and A. De Silva, “New developments in electrochemical machining”, CIRP Annals - Manufacturing Technology 48 (2), 567-579 (1999).
  • [4] K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundram, J. Mc- Geough, X. Hua, R. Resnick, and A. DeSilva, “Micro and nano machining by electro-physical and chemical processes”, CIRP Annals - Manufacturing Technology 55 (2), 643-666, (2006).
  • [5] B. Lauwers, “Surface integrity in hybrid machining processes”, Procedia Engineering 9, 241-251 (2011).
  • [6] J. Kozak and K.P. Rajurkar, “Selected problems of hybrid machining processes. Part 1. Electrochemical discharge machining (ECDM/ECAM)”, Advances in Manufacturing Science and Technology 24 (2), 25-50 (2000).
  • [7] J. Kozak and K.P. Rajurkar, “Selected problems of hybrid machining processes. Part II. Abrasive hybrid machining”, Advances in Manufacturing Science and Technology 24 (3), 5-24 (2000).
  • [8] B. Bhattacharyya, J. Munda, and M. Malapati, “Advancement in electrochemical micro-machining”, Int. J. Machine Tools and Manufacture 44 (15), 1577-1589 (2004).
  • [9] L. Cagnon, V. Kirchner, M. Kock, R. Schuster, G. Ertl, W.T. Gmelin, and H. K¨uck, “Electrochemical micromachining of stainless steel by ultrashort voltage pulses”, Zeitschrift f ¨ur Physikalische Chemie 217, 299-313 (2003).
  • [10] V. Kirchner, L. Cagnon, R. Schuster, and G. Ertl, “Electrochemical machining of stainless steel microelements with ultrashort voltage pulses”, Applied Physics Letters 79 (11), 1721-1723 (2001).
  • [11] H.-P. Schulze, A. Ruszaj, T. Gmelin, J. Kozak, K. Karbowski, D. Borkenhagen, M. Leone, and S. Skoczypiec, “Study of the process accuracy of the electrochemical micro machining using ultra nanosecond and short microsecond pulses”, Proc. 16th Int. Symp. on Electromachining 1, 651-656 (2010).
  • [12] R. Schuster, V. Kirchner, P. Allongue, and G. Ertl, “Electrochemical micromachining”, Science 289 (5476), 98-101 (2000).
  • [13] K.P. Rajurkar and J. Kozak, “Laser assisted electrochemical machining”, Trans. NAMRI 29, 421-427 (2001).
  • [14] P.T. Pajak, A.K.M. DeSilva, D.K. Harrison, and J.A. Mc- Geough “Precision and efficiency of laser assisted jet electrochemical machining”, Precision Engineering 30 (3), 288-298 (2006).
  • [15] A.K.M. DeSilva, P.T. Pajak, J.A. McGeough, and D.K. Harrison, “Thermal effects in laser assisted jet electrochemical machining”,CIRP Annals - Manufacturing Technology 60 (1), 243-246 (2011).
  • [16] H. Zhang and J. Xu, “Modeling and experimental investigation of laser drilling with jet electrochemical machining”, Chinese J. Aeronautics 23, 454-460 (2010).
  • [17] H. Zhang, J. Xu, and J. Wang, “Investigation of a novel hybrid process of laser drilling assisted with jet electrochemical machining”, Optics and Lasers in Engineering 47 (11), 1242-1249 (2009).
  • [18] P.-F. Chauvy, P. Hoffmann, and D. Landolt “Electrochemical micromachining of titanium using laser oxide film lithography: excimer laser irradiation of anodic oxide”, Applied Surface Science 211, 113-127 (2003).
  • [19] P.F. Chauvy, P. Hoffmann, and D. Landolt “Applications of laser lithography on oxide film to titanium micromachining”, Applied Surface Science 208-209, 165-170 (2003).
  • [20] H. Shik Shin, D. Kwan Chung, M. Soo Park, B. Hyun Kim, and C. Nam Chu, “Electrochemical etching of stainless steel through laser masking” J. Micromechanics and Microengineering 20 (5), CD-ROM (2010).
  • [21] H. Shik Shin, D. Kwan Chung, M. Soo Park, and C. Nam Chu, “Analysis of machining characteristics in electrochemical etching using laser masking”, Applied Surface Science 258 (5), 1689-1698 (2011).
  • [22] H.S. Shin, M.S. Park, and C.N. Chu “Electrochemical etching using laser masking for multilayered structures on stainless steel”, CIRP Annals - Manufacturing Technology 59, 585-588 (2010).
  • [23] J. O’M. Bockris, K. Amulya, K.N. Reddy, and M. Gamboa- Aldeco, “Modern electrochemistry”, in Fundamentals of Electrodics, Kluwer Academic Publishers, New York, 2000.
  • [24] R.J. von Gutfeld, E.E. Tynan, R.L. Melcher, and S.E. Blum, “Laser enhanced electroplating and maskless pattern generation”, Applied Physics Letters 35 (9), 651-653 (1979).
  • [25] R.J. Von Gutfeld, M.H. Gelchinski, D.R. Vigliotti, and L.T. Romankiw, “Recent advances in laser-enhanced plating”, MRS Proc. 29, 325-333 (1983).
  • [26] N.B Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials, Springer Science & Bussiness Media LLC, Berlin, 2008.
  • [27] B.C. Stuart, H.T. Nguyen, and M.D. Perry, “Method and apparatus for improving the quality and efficiency of ultrashortpulse laser machining”, US Patent 6268586 B1, 2001.
  • [28] R. Poprawe, Tailored Light 2. Laser Application Technology, Springer, Berlin, 2011.
  • [29] O.V. Vakulenko and V.S. Severin, “Calculation of the metal reflectivity with taking polarization into consideration “, Semiconductor Physics, Quantum Electronics & Optoelectronics 10 (1), 55-59 (2007).
  • [30] J. Cl. Puippe, R.E. Acosta, and R.J. von Gutfeld, “Investigation of laser-enhanced electroplating mechanisms”, J. Electrochemical Society 128 (12), 2539-2545 (1981).
  • [31] L.M. Wee and L. Li, “Multiple-layer laser direct writing metal deposition in electrolyte solution”, Applied Surface Science 247, 285-293 (2005).
  • [32] D. Wyszyński, S. Skoczypiec, M. Grabowskim, A. Ruszaj, and P. Lipiec “Electrochemical microprocessing assisted by diode pumped solid state ND:YAG pulse laser”, J. Machine Engineering 12 (1), 131-142 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08a18da7-e7fc-4b48-98c0-db2749c8fb60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.