PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Short term clustering modeling of seismicity in Eastern Aegean Sea (Greece): a retrospective forecast test of the 2017 Mw =6.4 Lesvos, 2017 Mw =6.6 Kos and 2020 Mw =7.0 Samos earthquake sequences

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Short-term earthquake clustering properties in the Eastern Aegean Sea (Greece) area investigated through the application of an epidemic type stochastic model (Epidemic Type Earthquake Sequence; ETES). The computations are performed in an earthquake catalog covering the period 2008 to 2020 and including 2332 events with a completeness threshold of Mc=3.1 and separated into two subcatalogs. The frst subcatalog is employed for the learning period, which is between 2008/01/01 and 2016/12/31 (N=1197 earthquakes), and used for the model’s parameters estimation. The second subcatalog from 2017/01/01 to 2020/11/10 (1135 earthquakes), in which the sequences of 2017 Mw=6.4 Lesvos, 2017 Mw=6.6 Kos and 2020 Mw=7.0 Samos main shocks are included, and used for a retrospective forecast testing based on the constructed model. The estimated model parameters imply a swarm like behavior, indicating the ability of earthquakes of small to moderate magnitude above Mc to produce their own ofsprings, along with the stronger earthquakes. The retrospective evaluation of the model is examined in the three aftershock sequences, where lack of foreshocks resulted in low predictability of the mainshocks, with estimated daily probabilities around 10–5. Immediately after the mainshocks occurrence the model adjusts with notable resemblance between the expected and observed aftershock rates, particularly for earthquakes with M≥3.5.
Czasopismo
Rocznik
Strony
1085--1099
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
  • Center of Integrated Geomorphology for the Mediterranean Area (CGIAM), Potenza, Italy
  • Istituto Nazionale Di Geofsica E Vulcanologia (INGV), Rome, Italy
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
autor
  • Istituto Nazionale Di Geofsica E Vulcanologia (INGV), Rome, Italy
Bibliografia
  • 1. Aki K (1965) Maximum likelihood estimate of b in formula log(N)=α-bM and its confidence limits. Bull Earthq Res Inst Univ Tokyo 43:237–239
  • 2. Aristotle University of Thessaloniki (1981) Aristotle University of Thessaloniki seismological network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HT
  • 3. Console R, Murru M (2001) A simple and testable model for earth-quake clustering. J Geophys Res 106:8699–8711
  • 4. Console R, Murru M, Lombardi AM (2003) Refining earthquake clustering models. J Geophys Res 108:2468
  • 5. Console R, Rhoades DA, Murru M, Evison FF, Papadimitriou EE, Karakostas VG (2006) Comparative performance of time- invariant, long range and short-range forecasting models on the earthquake catalogue of Greece. J Geophys Res 111:B09304. https://doi.org/10.1029/2005JB004113
  • 6. Console R, Murru M, Catalli F, Falcone G (2007) Real time forecasts through an earthquake clustering model constrained by the rate- and-state constitutive law: comparison with a purely stochastic ETAS model. Seismol Res Lett 78:49–56
  • 7. Console R, Jackson DD, Kagan YY (2010) Using the ETAS model for catalog declustering and seismic background assessment. Pure Appl Geophys 167:819–830
  • 8. de Arcangelis L, Godano C, Grasso JR, Lippiello E (2016) Statistical physics approach to earthquake occurrence and forecasting. Phys Rep 628:1–91. https://doi.org/10.1016/j.physrep.2016.03.002
  • 9. Field EH, Milner KR, Hardebeck JL, Page MT, van den Elst N, Jordan TH, Michael AJ, Shaw BE, Werner MJ (2017) A spatiotemporal clustering model for the third uniform California earthquake rupture forecast (UCERF3-ETAS): to- ward an operational earthquake forecast. Bull Seismol Soc Am 107:1049–1081. https://doi.org/10.1785/0120160173
  • 10. Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8–21
  • 11. Ganas A, Elias P, Kapetanidis V, Valkaniotis S, Briole P, Kassaras I, Argyrakis P, Barberopoulou A, Moshou A (2018) The July 20, 2017 M6.6 Kos earthquake: seismic and geodetic evidence for an active north-dipping normal fault at the western end of the Gulf of Gokova (SE Aegean Sea). Pure Appl Geophys 176(10):4177–4211. https://doi.org/10.1007/s00024-019-02154-y
  • 12. Gospodinov D, Karakostas V, Papadimitriou E (2015) Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation. Nat Hazards 79:1039–1058. https://doi.org/10.1007/s11069-015-1890-8
  • 13. Gutenberg B, Richter C (1949) Seismicity of the earth and associated phenomena, 2nd edn. University Press, Princeton
  • Helmstetter A, Jackson DD, Kagan YY (2006) Comparison of short-term and time-independent earthquake forecast models for southern California. Bull Seismol Soc Am 96:90–106
  • 14. Jordan T (2006) Earthquake predictability, brick by brick. Seismol Res Lett 77:3–6. https://doi.org/10.1785/gssrl.77.1.3
  • 15. Karakostas VG, Tan O, Kostoglou A, Papadimitriou EE, Bonatis P (2020) Seismotectonic implications of the 2020 Samos, Greece, M7.0 mainshock based on high-resolution aftershocks relocation, source slip model, and previous microearthquake activity. Acta Geophys (submitted)
  • 16. Kourouklas C, Mangira O, Iliopoulos A, Chorozoglou D, Papadimitriou E (2020) A study of short-term spatiotemporal clustering features of Greek seismicity. J Seismol 24:459–477. https://doi.org/10.1007/s10950-020-09928-1
  • 17. LePichon X, Angelier J (1979) The Hellenic Arc and Trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60(1–2):1–42
  • 18. Lombardi AM, Cocco M, Marzocchi W (2010) On the increase of background seismicity rate during the 1997–1998 Umbria-Marche, central Italy, sequence: apparent variation or fluid- driven triggering? Bull Seismol Soc Am 100:1138–1152
  • 19. Mangira O, Console R, Papadimitriou E, Murru M, Karakostas V (2020) The short-term seismicity of the Central Ionian Islands (Greece) studied by means of a clustering model. Geophys J Int 220:856–875. https://doi.org/10.1093/gji/ggz481
  • 20. Marzocchi W, Lombardi AM (2008) A double branching model for earthquake occurrence. J Geophys Res 113:317
  • 21. Marzocchi W, Lombardi AM (2009) Real-time forecasting following a damaging earthquake. Geophys Res Lett 36:L21302
  • 22. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradisis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719. https://doi.org/10.1029/1999JB900351
  • 23. Mesimeri M, Kourouklas C, Papadimitriou E, Karakostas V, Kementzetzidou D (2018) Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey. Acta Geophys 66:479–495. https://doi.org/10.1007/s11600-018-0157-7
  • 24. Murru M, Console R, Falcone G (2009) Real time earthquake forecasting in Italy. Tectonophysics 470:214–223
  • 25. Murru M, Zhuang J, Console R (2014) Falcone G (2014) Short-term earthquake forecasting experiment before and during the L’Aquila (central Italy) seismic sequence of April 2009. Ann Geophys 57:S0649. https://doi.org/10.4401/ag-6583
  • 26. Ogata Y (1983) Estimation of the parameters in the modified Omori formula for aftershock sequences by the maximum likelihood procedure. J Phys Earth 31:115–124
  • 27. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27
  • 28. Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math 50:379–402
  • 29. Ogata Y (2011) Significant improvements of the space-time ETAS for forecasting of accurate baseline seismicity. Earth Planets Space 63:217–229. https://doi.org/10.5047/eps.2010.09.001
  • 30. Ogata Y, Zhuang J (2006) Space-time ETAS models and an improved extension. Tectonophysics 413:13–23. https://doi.org/10.1016/j.tecto.2005.10.016
  • 31. Ogata Y, Katsura K, Falcone G, Nanjo KZ, Zhuang J (2013) Comprehensive and topical evaluations of earthquake forecasts in terms of number, time, space, and magnitude. Bull Seismol Soc Am 103:1692–1708
  • 32. Omori F (1894) On the aftershocks of earthquakes. J Coll Sci Imp Univ Tokyo 7:111–200
  • 33. Papadimitriou P, Kassaras I, Kaviris G, Tselentis G-A, Voulgaris N, Lekkas E, Chouliaras G, Evangelidis C, Pavlou K, Kapetanidis V, Karakonstantis A, Kazantzidou-Firtinidou D, Fountoulakis I, Millas C, Spingos I, Aspiotis T, Moumoulidou A, Skourtsos E, Antoniou V, Andreadakis E, Mavroulis S, Kleanthi M (2018) The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. J Geodyn 115:23–42. https://doi.org/10.1016/j.jog.2018.01.009
  • 34. Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the Aegean arc. J Geophys Res 76:8517–8533
  • 35. Papazachos BC, Karakaisis GF, Papadimitriou EE, Papaioannou CA (1997a) The regional time and magnitude predictable model and its application to the Alpine-Himalayan belt. Tectonophysics 271:295–323
  • 36. Papazachos BC, Kiratzi AA, Karakostas BG (1997b) Towards a homogeneous moment-magnitude determination for earth- quakes in Greece and the surrounding area. Bull Seismol Soc Am 87:474–483
  • 37. Rhoades DA, Evison FF (2004) Long-range earthquake forecasting with every earthquake a precursor according to scale. Pure Appl Geophys 161:47–72
  • 38. Rhoades DA, Schorlemmer D, Gerstenberger MC, Christophersen A, Zechar JD, Imoto M (2011) Efficient testing of earthquake forecasting models. Acta Geophys 59:728–747
  • 39. Savran WH, Werner MJ, Marzocchi W, Rhoades DA, Jackson DD, Milner K, Field E, Michael A (2020) Pseudoprospective evaluation of UCERF3-ETAS forecasts during the 2019 Ridgecrest sequence. Bull Seismol Soc Am 110:1799–1817. https://doi.org/10.1785/0120200026
  • 40. Schorlemmer D, Werner MJ, Marzocchi W, Jordan TH, Ogata Y, Jackson DD, Mak S, Rhoades DA, Gerstenberger MC, Hirata N, Liukis M, Maechling PJ, Strader A, Taroni M, Wiemer S, Zechar JD, Zhuang J (2018) The collaboratory for the study of earthquake predictability: achievements and priorities. Seismol Res Lett 89(4):1305–1313. https://doi.org/10.1785/0220180053
  • 41. Shi Y, Bolt A (1982) The standard error of the magnitude-frequency b value. Bull Seismol Soc Am 72:1677–1687
  • 42. Tan O, Papadimitriou EE, Pabuccu Z, Karakostas V, Yoruk A, Leptokaropoulos K (2014) A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Aegean Sea) areas. Acta Geophys 62:1283–1309. https://doi.org/10.2478/s11600-013-0194-1
  • 43. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409–410
  • 44. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90:859–869. https://doi.org/10.1785/0119990114
  • 45. Zechar JD, Schorlemmer D, Liukis M, Yu J, Euchner F, Maechling PJ, Jordan TH (2010) The collaboratory for the study of earthquake predictability perspective on computational earth- quake science. Concurr Comput Pract Exp 22(12):1836–1847. https://doi.org/10.1002/cpe.1519
  • 46. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrence. J Am Stat Assoc 97:369–380
  • 47. Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clustering features by using stochastic reconstruction. J Geophys Res 109:B05301. https://doi.org/10.1029/2003JB002879
  • 48. Zhuang J, Chang C-P, Ogata Y, Chen Y-I (2005) A study of the background and clustering seismicity in the Taiwan region by using a point process model. J Geophys Res 110:B05S18. https://doi.org/10.1029/2004JB003157
  • 49. Zhuang J, Christophersen A, Savage MK, Vere-Jones DD (2008) Differences between spontaneous and triggered earthquakes. Their influences on foreshock probabilities. J Geophys Res 113:B11302
  • 50. Zhuang J, Murru M, Falcone G, Guo Y (2018) An extensive study of clustering features of seismicity in Italy from 2005 to 2016. Geophys J Int 216:302–318. https://doi.org/10.1093/gji/ggy428
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-089b0ef1-0d0b-4468-a64f-2eee1ce4a3dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.