Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is devoted to the study of the effect of delays on the asymptotic stability of a linear differential equation with two delays x′(t) = −ax(t) − bx(t − τ ) − cx(t − 2τ ), t ≥ 0, where a, b, and c are real numbers and τ > 0. We establish some explicit conditions for the zero solution of the equation to be asymptotically stable. As a corollary, it is shown that the zero solution becomes unstable eventually after undergoing stability switches finite times when τ increases only if c−a < 0 and [formula]. The explicit stability dependence on the changing τ is also described.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
673--690
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Osaka Prefecture University, Department of Mathematical Sciences, Sakai 599-8531, Japan
autor
- Osaka Metropolitan University, Department of Mathematics, Sakai 599-8531, Japan
Bibliografia
- [1] D.M. Bortz, Characteristic roots for two-lag linear delay differential equations, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 2409–2422.
- [2] B. Cahlon, D. Schmidt, Stability criteria for first order delay differential equations with M commensurate delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 157–177.
- [3] K.L. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl. 86 (1982), 592–627.
- [4] T. Elsken, The region of (in)stability of a 2-delay equation is connected, J. Math. Anal. Appl. 261 (2001), 497–526.
- [5] K. Gu, S. Niculescu, J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl. 311 (2005), 231–253.
- [6] J.K. Hale, W. Huang, Global geometry of the stable regions for two delay differential equations, J. Math. Anal. Appl. 178 (1993), 344–362.
- [7] J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
- [8] N.D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation, J. London Math. Soc. 25 (1950), 226–232.
- [9] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.
- [10] J.M. Mahaffy, T.C. Busken, Regions of stability for a linear differential equation with two rationally dependent delays, Discrete Contin. Dyn. Syst. 35 (2015), 4955–4986.
- [11] J.M. Mahaffy, K.M. Joiner, P.J. Zak, A geometric analysis of stability regions for a linear differential equation with two delays, Internat. J. Bifur. Chaos 5 (1995), 779–796.
- [12] H. Matsunaga, Delay-dependent and delay-independent stability criteria for a delay differential system, Proc. Amer. Math. Soc. 136 (2008), 4305–4312.
- [13] H. Matsunaga, Stability switches in a system of linear differential equations with diagonal delay, Appl. Math. Comput. 212 (2009), 145–152.
- [14] J. Nishiguchi, On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay, Discrete Contin. Dyn. Syst. 36 (2016), 5657–5679.
- [15] S. Ruan, J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), 863–874.
- [16] G.M. Schoen, H.P. Geering, Stability condition for a delay differential system, Internat. J. Control 58 (1993), 247–252.
- [17] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Scientific & Technical, New York, 1989.
- [18] X. Yan, J. Shi, Stability switches in a logistic population model with mixed instantaneous and delayed density dependence, J. Dynam. Differential Equations 29 (2017), 113–130.
- [19] X. Zhang, J. Wu, Critical diapause portion for oscillations: parametric trigonometric functions and their applications for Hopf bifurcation analyses, Math. Methods Appl. Sci. 42 (2019), 1363–1376.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0897abdc-bedd-4915-8c0b-a051e5e0ac28