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STABILITY SWITCHES
IN A LINEAR DIFFERENTIAL EQUATION

WITH TWO DELAYS
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Abstract. This paper is devoted to the study of the effect of delays on the asymptotic
stability of a linear differential equation with two delays

x′(t) = −ax(t) − bx(t − τ) − cx(t − 2τ), t ≥ 0,

where a, b, and c are real numbers and τ > 0. We establish some explicit conditions
for the zero solution of the equation to be asymptotically stable. As a corollary, it is
shown that the zero solution becomes unstable eventually after undergoing stability
switches finite times when τ increases only if c − a < 0 and

√
−8c(c − a) < |b| < a + c.

The explicit stability dependence on the changing τ is also described.
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1. INTRODUCTION

For the last half century, great attention has been paid to delay differential equations
which have significant background in physics, engineering, and biology to investigate
some dynamical behaviors such as stability, periodic phenomenon, bifurcation, and
chaos. If a delay differential equation is autonomous, then the stability of the trivial
solution (i.e., the zero solution) of the linearized equation depends on the distribution
of the roots of the associated characteristic equation; see, e.g., [7, 9]. If all roots of the
characteristic equation are located in the left half-plane of the complex plane, that
is, all characteristic roots have negative real parts, then the trivial solution is locally
asymptotically stable; if there is some characteristic root in the right half-plane of
the complex plane, that is, there is some characteristic root with positive real part,
then the trivial solution is unstable. In particular, stability dependence on some of
changing system parameters belongs among the key qualitative properties of studied
dynamical systems.
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This study addresses the stability problem for a linear autonomous differential
equation with two delays

x′(t) = −ax(t) − bx(t − τ) − cx(t − σ), t ≥ 0, (E0)

where a, b, and c are real numbers and τ and σ are positive constants.
When c = 0, it is well known [3,8, 12] that the zero solution of the equation

x′(t) = −ax(t) − bx(t − τ), t ≥ 0, (E1)

is asymptotically stable if and only if

a + b > 0 and b2 − a2 ≤ 0

or
a + b > 0, b2 − a2 > 0, and τ <

1√
b2 − a2

arccos
(

−a

b

)
.

When a = 0 and b = c, it is known [9,17] that the zero solution of the equation

x′(t) = −bx(t − τ) − bx(t − σ), t ≥ 0,

is asymptotically stable if and only if

0 < b(τ + σ) cos
(

τ − σ

τ + σ

π

2

)
<

π

2 .

In the last three decades, a great deal of effort has been devoted to the study of
the asymptotic stability of (E0) with bc ̸= 0. For example, those results can be found
in [1, 2, 4–6,10,11,15, 16, 18, 19] and the references cited therein. However, to our best
knowledge, the explicit stability criteria for (E0) have not yet been obtained. Despite
the first-order scalar differential equation with delays, one of the reasons why stability
analysis for (E0) is very difficult is that stability switches with increasing τ may occur
in (E0); that is, when τ increases, the zero solution of (E0) may change finite times
from stability to instability to stability, and becomes unstable eventually. Notice that
a restabilization with increasing τ is not possible in (E1) with real coefficients. On the
other hand, if a is a complex number, stability switches occur in (E1) under certain
conditions; see, e.g., [13, 14].

In this paper we investigate stability properties for (E0) in the special case σ = 2τ ,
namely,

x′(t) = −ax(t) − bx(t − τ) − cx(t − 2τ), t ≥ 0. (1.1)

Recently in [18], Yan and Shi discussed the asymptotic stability of (1.1) under a > 0,
b > 0, and c > 0, and gave stability criteria for (1.1) which include stability switches.
Our purpose is to present the explicit stability criteria for (1.1) completely, i.e., to
establish new necessary and sufficient conditions for the zero solution of (1.1) to be
asymptotically stable.
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Throughout this paper, for brevity, let ω+ and ω− be constants defined as

ω+ =

√
−2(a2 − c2) + b2 +

√
b2(b2 + 8c(c − a))

2 ,

ω− =

√
−2(a2 − c2) + b2 −

√
b2(b2 + 8c(c − a))

2 .

Under suitable conditions, real numbers ω2
+ and ω2

− exist and are positive roots of
a quadratic equation; see Lemma 2.3. For n ∈ Z+ := {0, 1, 2, . . .}, let τ+

n , τ−
n , σ+

n , and
σ−

n be critical values of τ defined as

τ+
n = 1

ω+

(
arccos

(
b(c − a)

ω2
+ + a2 − c2

)
+ 2nπ

)
,

τ−
n = 1

ω−

(
arccos

(
b(c − a)

ω2
− + a2 − c2

)
+ 2nπ

)
,

σ+
n = 1

ω+

(
− arccos

(
b(c − a)

ω2
+ + a2 − c2

)
+ 2(n + 1)π

)
,

σ−
n = 1

ω−

(
− arccos

(
b(c − a)

ω2
− + a2 − c2

)
+ 2(n + 1)π

)
;

see Remark 2.6 and Lemmas 2.7 and 2.8 on the condition of positiveness of each
constant above. Especially, when n = 0, we set τ−

n−1 = σ−
n−1 = 0. In addition, we name

the following two conditions (A0) and (A1) respectively:

b2 + 8c(c − a) ̸= 0 if 2(a2 − c2) − b2 < 0, (A0)
a − b + c > 0, 2(a2 − c2) − b2 < 0, and b2 + 8c(c − a) > 0. (A1)

Our main results are stated as follows:
Theorem 1.1. Let b > 0. Suppose that (A0) is satisfied. Then the zero solution of
(1.1) is asymptotically stable if and only if condition a + b + c > 0 holds and any one
of the following five conditions is satisfied:

b2 + 8c(c − a) < 0 or “a − b + c ≥ 0 and 2(a2 − c2) − b2 ≥ 0”, (1.2)
a − b + c < 0 and τ < τ+

0 , (1.3)
a − b + c = 0, 2(a2 − c2) − b2 < 0, and τ < τ+

0 , (1.4)
a − b + c > 0, c − a ≥ 0, and τ < τ+

0 , (1.5)
(A1), c − a < 0, and τ ∈ (0, τ+

0 ) ∪ (τ−
0 , τ+

1 ) ∪ . . . ∪ (τ−
k−1, τ+

k ). (1.6)

Here k is a nonnegative integer given by

k =
⌈

ω+ω−(τ+
1 − τ−

0 )
2(ω+ − ω−)π

⌉
, (1.7)

where ⌈·⌉ denotes the ceiling function, namely, ⌈x⌉ = min{r ∈ Z | x ≤ r}.



676 Yuki Hata and Hideaki Matsunaga

Theorem 1.2. Let b < 0. Suppose that (A0) is satisfied. Then the zero solution of
(1.1) is asymptotically stable if and only if condition a + b + c > 0 holds and any one
of the following four conditions is satisfied:

b2 + 8c(c − a) < 0 or “a − b + c ≥ 0 and 2(a2 − c2) − b2 ≥ 0”, (1.8)
c − a = 0 and τ < σ+

0 , (1.9)
c − a > 0 and τ < min{σ+

0 , τ−
0 }, (1.10)

(A1), c − a < 0, and τ ∈ (0, σ+
0 ) ∪ (σ−

0 , σ+
1 ) ∪ . . . ∪ (σ−

ℓ−1, σ+
ℓ ). (1.11)

Here ℓ is a nonnegative integer given by

ℓ =
⌈

ω+ω−(σ+
1 − σ−

0 )
2(ω+ − ω−)π

⌉
. (1.12)

Moreover, it is easily seen that conditions a + b + c > 0, (A1), and c − a < 0 are
reduced to

c − a < 0 and
√

−8c(c − a) < |b| < a + c. (1.13)

By virtue of Theorems 1.1 and 1.2, one can obtain the following corollary.

Corollary 1.3. Stability switches occur in (1.1) only if condition (1.13) is satisfied.

To illustrate this, we take a = 1 and c = 0.8. Then condition (1.13) becomes

1.13137 ≈
√

1.28 < |b| < 1.8.

Rewriting k defined by (1.7) as k(b) and ℓ defined by (1.12) as ℓ(b), one can find

k(1.2) = 1, k(1.14) = 3, k(1.132) = 13, k(1.1314) = 61,

ℓ(−1.2) = 0, ℓ(−1.14) = 3, ℓ(−1.132) = 12, ℓ(−1.1314) = 60.

For example, in the case a = 1, b = −1.14, and c = 0.8, Theorem 1.2 indicates that
the zero solution of (1.1) is asymptotically stable if and only if

τ ∈ (0, σ+
0 ) ∪ (σ−

0 , σ+
1 ) ∪ (σ−

1 , σ+
2 ) ∪ (σ−

2 , σ+
3 ),

where the critical values of σ+
n and σ−

n are expressed numerically as

σ+
0 ≈ 8.274, σ+

1 ≈ 18.609, σ+
2 ≈ 28.944, σ+

3 ≈ 39.279, σ+
4 ≈ 49.614,

σ−
0 ≈ 11.181, σ−

1 ≈ 24.892, σ−
2 ≈ 38.603, σ−

3 ≈ 52.314.

Remark 1.4. In case (A0) is not satisfied, that is,

b2 + 8c(c − a) = 0 and 2(a2 − c2) − b2 < 0, (1.14)

the explicit stability criteria for (1.1) have not yet been obtained; see Remark 2.10.
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2. PROOF OF THEOREMS

The characteristic equation of (1.1) is expressed as

f(λ) := λ + a + be−λτ + ce−2λτ = 0. (2.1)

Notice that (2.1) has the root 0 if and only if a + b + c = 0. Also, if a + b + c < 0,
then (2.1) has at least one positive root because f(0) < 0 and limλ→+∞ f(λ) = +∞.
Hence, one can immediately obtain the following lemma.

Lemma 2.1. If a + b + c ≤ 0, then (2.1) has at least one nonnegative root.

By virtue of Lemma 2.1, it suffices to examine the location of roots of (2.1) in the
complex plane under a + b + c > 0. Notice that f(λ) is an analytic function, and thus,
the roots of (2.1) are continuously depending on τ . The next proposition presented by
Corollary 2.4 in [15] plays an important role in our proof.

Proposition 2.2. As τ varies, the sum of the multiplicities of roots of (2.1) in the
open right half-plane can change only if a root appears on or crosses the imaginary axis.

Therefore, we will investigate the existence of purely imaginary roots of (2.1) and
the crossing of roots of (2.1) through the imaginary axis.

Let ±iω be a pair of purely imaginary roots of (2.1) with ω > 0. Then f(iω) = 0, or

(iω + a)eiωτ + b + ce−iωτ = 0. (2.2)

Separating the real and imaginary parts of (2.2), one can obtain
{

(a + c) cos ωτ − ω sin ωτ + b = 0,

ω cos ωτ + (a − c) sin ωτ = 0,

namely,
{

(ω2 + a2 − c2) cos ωτ = b(c − a),
(ω2 + a2 − c2) sin ωτ = bω.

(2.3)

In case ω2 + a2 − c2 = 0, relation (2.3) gives bω = 0, which is a contradiction.
So ω2 + a2 − c2 ̸= 0, and hence, f(iω) = 0 is equivalent to

cos ωτ = b(c − a)
ω2 + a2 − c2 , sin ωτ = bω

ω2 + a2 − c2 . (2.4)

From equality cos2 ωτ + sin2 ωτ = 1, we find

(ω2 + a2 − c2)2 = b2(ω2 + (a − c)2). (2.5)

An easy calculation shows that (2.5) is reduced to

ω4 + (2(a2 − c2) − b2)ω2 + (a + b + c)(a − b + c)(a − c)2 = 0,
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which, by z = ω2, becomes

z2 + (2(a2 − c2) − b2)z + (a + b + c)(a − b + c)(a − c)2 = 0. (2.6)

From the quadratic formula of (2.6), it follows that

z = −2(a2 − c2) + b2 ±
√

D

2 (= ω2
±),

where D is the discriminant defined by

D := (2(a2 − c2) − b2)2 − 4(a + b + c)(a − b + c)(a − c)2

= b2(b2 + 8c(c − a)).

Notice that

ω2
+ + a2 − c2 = b2 +

√
D

2 , ω2
− + a2 − c2 = b2 −

√
D

2 = −4c(c − a)
b2 +

√
D

. (2.7)

The next lemma classifies the existence of positive roots of (2.6).

Lemma 2.3. Let b ̸= 0 and a + b + c > 0. Then the following statements hold:

(I) Equation (2.6) has no positive roots if and only if b2 + 8c(c − a) < 0 or
“a − b + c ≥ 0 and 2(a2 − c2) − b2 ≥ 0”.

(IIa) Equation (2.6) has one positive root ω2
+ and one negative root ω2

− if and only
if a − b + c < 0.

(IIb) Equation (2.6) has one positive root ω2
+ and the root 0 if and only if a = c or

“a − b + c = 0 and 2(a2 − c2) − b2 < 0”.
(IIc) Equation (2.6) has double positive roots ω2

+ if and only if b2 + 8c(c − a) = 0
and 2(a2 − c2) − b2 < 0.

(IIIa) Equation (2.6) has two distinct positive roots ω2
+, ω2

− with ω2
− + a2 − c2 < 0

if and only if (A1) and c − a > 0.
(IIIb) Equation (2.6) has two distinct positive roots ω2

+, ω2
− with ω2

− + a2 − c2 > 0
if and only if (A1) and c − a < 0.

Proof. Let p and q be real numbers. The existence of positive roots of the quadratic
equation x2 + px + q = 0 can be classified as follows:

(i) The equation has no positive roots if and only if ∆ := p2 − 4q < 0 or “p ≥ 0 and
q ≥ 0”.

(iia) The equation has one positive root and one negative root if and only if q < 0.
(iib) The equation has one positive root and the root 0 if and only if q = 0 and p < 0.
(iic) The equation has double positive roots if and only if ∆ = 0 and p < 0.
(iii) The equation has two distinct positive roots if and only if ∆ > 0, p < 0, and

q > 0.
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By applying this classification to (2.6), we can immediately obtain assertions of (I),
(IIa), (IIb), (IIc) in Lemma 2.3, and

(III) Equation (2.6) has two distinct positive roots ω2
+, ω2

− if and only if (A1) is
satisfied.

Therefore, if inequality c > 0 is valid under conditions b ̸= 0, a + b + c > 0, and
(A1), then relation (2.7) yields assertions (IIIa) and (IIIb) in Lemma 2.3. To this
end, suppose that c ≤ 0. Inequality a + b + c > 0 with a − b + c > 0 in (A1) implies
a > |b| − c > 0. From this, we observe that

a2 > (|b| − c)2 = b2 − 2|b|c + c2 >
b2

2 + c2,

which contradicts 2(a2 − c2) − b2 < 0 in (A1). This completes the proof.

Remark 2.4. Lemma 2.3 indicates that there are six possible cases in analyzing
purely imaginary roots of (2.1) as follows:

(a) b2 + 8c(c − a) < 0 or “a − b + c ≥ 0 and 2(a2 − c2) − b2 ≥ 0”.
(b) a − b + c < 0.
(c) a = c or “a − b + c = 0 and 2(a2 − c2) − b2 < 0”.
(d) b2 + 8c(c − a) = 0 and 2(a2 − c2) − b2 < 0.
(e) (A1) and c − a > 0.
(f) (A1) and c − a < 0.

Remark 2.5. If b > 0 and a + b + c > 0, Case (e) is equivalent to the case
a − b + c > 0 and c − a > 0 because 2(a2 − c2) − b2 < 0 and b2 + 8c(c − a) > 0 in (A1)
are always satisfied under c(c − a) > 0. On the other hand, if b < 0 and a + b + c > 0,
Case (e) is equivalent to the case c − a > 0 because condition (A1) is always satisfied
under c(c − a) > 0.

Remark 2.6. In the case b ̸= 0, inequality
∣∣∣∣

b(c − a)
ω2

± + a2 − c2

∣∣∣∣ < 1 (2.8)

is valid for ω+ > 0 and ω− > 0. In fact, suppose that

|b(c − a)| ≥ |ω2
± + a2 − c2|.

Recall that ω2
+ and ω2

− are positive roots of (2.6) and satisfy (2.5). Then we have

b2(c − a)2 ≥ (ω2
± + a2 − c2)2 = b2(ω2

± + (a − c)2),

or, 0 ≥ b2ω2
±, which is a contradiction.
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When b > 0, we establish the following result on purely imaginary roots of (2.1).
Lemma 2.7. Let b > 0 and a + b + c > 0. Suppose that iω is a root of (2.1) with
ω > 0. Then the positive values of ω and τ are given as follows:
(i) If b2 + 8c(c − a) > 0 or “a − b + c ≥ 0 and 2(a2 − c2) − b2 ≥ 0”, then (2.1) has

no purely imaginary roots for τ > 0.
(ii) If a − b + c < 0, then (ω, τ) = (ω+, τ+

n ) for n ∈ Z+.
(iii) If a = c or “a − b + c = 0 and 2(a2 − c2) − b2 < 0”, then (ω, τ) = (ω+, τ+

n )
for n ∈ Z+.

(iv) If b2 + 8c(c − a) = 0 and 2(a2 − c2) − b2 < 0, then (ω, τ) = (ω+, τ+
n ) for n ∈ Z+.

(v) If a−b+c > 0 and c−a > 0, then (ω, τ) = (ω+, τ+
n ), (ω−, σ−

n ) with ω2
−+a2−c2 < 0

for n ∈ Z+.
(vi) If (A1) and c − a < 0, then (ω, τ) = (ω+, τ+

n ), (ω−, τ−
n ) with ω2

− + a2 − c2 > 0
for n ∈ Z+.

Conversely, if ω+ > 0 and τ = τ+
n for n ∈ Z+, then iω+ is a root of (2.1); if ω− > 0

and τ = τ−
n (resp. τ = σ−

n ) with c − a < 0 (resp. c − a > 0) for n ∈ Z+, then iω− is
a root of (2.1).
Proof. We recall that f(iω) = 0 is equivalent to relation (2.4). Let iω be a root of
(2.1) with ω > 0. Notice that ω2 is a positive root of (2.6). Our argument is based on
six cases in Remark 2.4 under b > 0 and a + b + c > 0.

Case (a). Lemma 2.3 (I) asserts that statement (i) in Lemma 2.7 is verified.
Cases (b), (c), (d), (e), and (f). By Lemma 2.3 (IIa), (IIb), (IIc), (IIIa), and (IIIb),

we have ω = ω+. Observe that ω2
+ + a2 − c2 > 0 by (2.7). Thus, (2.4) and sin ω+τ > 0

lead to
ω+τ = arccos

(
b(c − a)

ω2
+ + a2 − c2

)
+ 2nπ, n ∈ Z+,

which implies (ω, τ) = (ω+, τ+
n ) for n ∈ Z+.

Case (e). As stated in Remark 2.5, this case is equivalent to the case a − b + c > 0
and c − a > 0. By Lemma 2.3 (IIIa), we find ω = ω− with ω2

− + a2 − c2 < 0. Hence,
(2.4) and sin(−ω−τ) > 0 give

−ω−τ = arccos
(

b(c − a)
ω2

− + a2 − c2

)
− 2(n + 1)π, n ∈ Z+,

which yields (ω, τ) = (ω−, σ−
n ) for n ∈ Z+.

Case (f). By Lemma 2.3 (IIIb), we find ω = ω− with ω2
− + a2 − c2 > 0. Therefore,

(2.4) and sin(ω−τ) > 0 lead to

ω−τ = arccos
(

b(c − a)
ω2

− + a2 − c2

)
+ 2nπ, n ∈ Z+,

which implies (ω, τ) = (ω−, τ−
n ) for n ∈ Z+.

Conversely, suppose ω+ > 0 and τ = τ+
n for n ∈ Z+. Then ω2

+ + a2 − c2 > 0
by (2.7), and the definition of τ+

n and (2.8) give

cos ω+τ+
n = b(c − a)

ω2
+ + a2 − c2 , sin ω+τ+

n = sin
(

arccos
(

b(c − a)
ω2

+ + a2 − c2

))
> 0.
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By (2.5), we have

sin ω+τ+
n =

√
1 − cos2 ω+τ+

n =

√
(ω2

+ + a2 − c2)2 − b2(c − a)2

ω2
+ + a2 − c2

=

√
b2(ω2

+ + (a − c)2) − b2(a − c)2

ω2
+ + a2 − c2 = bω+

ω2
+ + a2 − c2 .

These facts mean that (2.4) is valid in (ω, τ) = (ω+, τ+
n ); i.e., f(iω+) = 0.

Suppose ω− > 0 and τ = τ−
n with c − a < 0 for n ∈ Z+. Then ω2

− + a2 − c2 > 0 by
Lemma 2.3 (IIIb), and the definition of τ−

n and (2.8) lead to

cos ω−τ−
n = b(c − a)

ω2
− + a2 − c2 , sin ω−τ−

n = sin
(

arccos
(

b(c − a)
ω2

− + a2 − c2

))
> 0.

By (2.5), we have

sin ω−τ−
n =

√
1 −

(
b(c − a)

ω2
− + a2 − c2

)2
= bω−

ω2
− + a2 − c2 .

These facts imply that (2.4) is verified in (ω, τ) = (ω−, τ−
n ); i.e., f(iω−) = 0.

Suppose ω− > 0 and τ = σ−
n with c − a > 0 for n ∈ Z+. Then ω2

− + a2 − c2 < 0 by
Lemma 2.3 (IIIa), and the definition of σ−

n and (2.8) give

cos ω−σ−
n = b(c − a)

ω2
− + a2 − c2 , sin ω−σ−

n = sin
(

− arccos
(

b(c − a)
ω2

− + a2 − c2

))
< 0.

By (2.5), we obtain

sin ω−σ−
n = −

√
1 −

(
b(c − a)

ω2
− + a2 − c2

)2
= bω−

ω2
− + a2 − c2 .

These facts mean that (2.4) is valid in (ω, τ) = (ω−, σ−
n ); i.e., f(iω−) = 0.

When b < 0, we establish the following result on purely imaginary roots of (2.1).

Lemma 2.8. Let b < 0 and a + b + c > 0. Suppose that iω is a root of (2.1) with
ω > 0. Then the positive values of ω and τ are given as follows:

(i) If b2 + 8c(c − a) > 0 or “a − b + c ≥ 0 and 2(a2 − c2) − b2 ≥ 0”, then (2.1) has
no purely imaginary roots for τ > 0.

(ii) If a = c, then (ω, τ) = (ω+, σ+
n ) for n ∈ Z+.

(iii) If b2 + 8c(c − a) = 0 and 2(a2 − c2) − b2 < 0, then (ω, τ) = (ω+, σ+
n ) for n ∈ Z+.

(iv) If c − a > 0, then (ω, τ) = (ω+, σ+
n ), (ω−, τ−

n ) with ω2
− + a2 − c2 < 0 for n ∈ Z+.

(v) If (A1) and c − a < 0, then (ω, τ) = (ω+, σ+
n ), (ω−, σ−

n ) with ω2
− + a2 − c2 > 0

for n ∈ Z+.
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Conversely, if ω+ > 0 and τ = σ+
n for n ∈ Z+, then iω+ is a root of (2.1); if ω− > 0

and τ = τ−
n (resp. τ = σ−

n ) with c − a > 0 (resp. c − a < 0) for n ∈ Z+, then iω− is
a root of (2.1).

Proof. We recall that f(iω) = 0 is equivalent to relation (2.4). Let iω be a root of
(2.1) with ω > 0. Notice that ω2 is a positive root of (2.6). Our argument is based on
six cases in Remark 2.4 under b < 0 and a + b + c > 0. For convenience, divide Case (c)
into Case (c1): a = c and Case (c2): a − b + c = 0 and 2(a2 − c2) − b2 < 0. Notice that
Case (b) and Case (c2) cannot occur because a − b + c > a + b + c > 0 by b < 0.

Case (a). Lemma 2.3 (I) asserts that statement (i) in Lemma 2.8 is verified.
Cases (c1), (d), (e), and (f). By Lemma 2.3 (IIb), (IIc), (IIIa), and (IIIb), we have

ω = ω+. Observe that ω2
+ + a2 − c2 > 0 by (2.7). Thus, (2.4) and sin(−ω+τ) > 0

lead to

−ω+τ = arccos
(

b(c − a)
ω2

+ + a2 − c2

)
− 2(n + 1)π, n ∈ Z+,

which yields (ω, τ) = (ω+, σ+
n ) for n ∈ Z+.

Case (e). As stated in Remark 2.5, this case is equivalent to the case c − a > 0.
By Lemma 2.3 (IIIa), we find ω = ω− with ω2

− + a2 − c2 < 0. Hence, (2.4) and
sin ω−τ > 0 give

ω−τ = arccos
(

b(c − a)
ω2

− + a2 − c2

)
+ 2nπ, n ∈ Z+,

which implies (ω, τ) = (ω−, τ−
n ) for n ∈ Z+.

Case (f). By Lemma 2.3 (IIIb), we find ω = ω− with ω2
− + a2 − c2 > 0. Therefore,

(2.4) and sin(−ω+τ) > 0 lead to

−ω−τ = arccos
(

b(c − a)
ω2

− + a2 − c2

)
− 2(n + 1)π, n ∈ Z+,

which yields (ω, τ) = (ω−, σ−
n ) for n ∈ Z+.

The rest of the proof can be carried out in the same way as the proof of Lemma 2.7,
so it will be omitted.

Next, we will examine how one pair of complex roots of (2.1) crosses through
the imaginary axis as τ increases.

Lemma 2.9. Let b ̸= 0 and a + b + c > 0. Then the following statements hold:

(i) The roots ±iω+ enter the right half-plane as τ increases from τ+
n (b > 0) or σ+

n

(b < 0) for n ∈ Z+.
(ii) If (A1) and c−a > 0, then the roots ±iω− enter the right half-plane as τ increases

from σ−
n (b > 0) or τ−

n (b < 0) for n ∈ Z+.
(iii) If (A1) and c − a < 0, then the roots ±iω− enter the left half-plane as τ increases

from τ−
n (b > 0) or σ−

n (b < 0) for n ∈ Z+.
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Proof. Take the derivative of λ with respect to τ on (2.1) to obtain

dλ

dτ
− b

(
λe−λτ + τe−λτ dλ

dτ

)
− c

(
2λe−2λτ + 2τe−2λτ dλ

dτ

)
= 0,

namely,

dλ

dτ
= bλe−λτ + 2cλe−2λτ

1 − bτe−λτ − 2cτe−2λτ

= bλe−λτ + 2λ(−λ − a − be−λτ )
1 − bτe−λτ − 2τ(−λ − a − be−λτ )

= −2λ2 − 2aλ − bλe−λτ

1 + 2λτ + 2aτ + bτe−λτ
.

This implies that

dλ

dτ

∣∣∣∣
λ=±iω

= 2ω2 ∓ 2iaω ∓ ibω(cos ωτ ∓ i sin ωτ)
1 + 2aτ ± 2iωτ + bτ(cos ωτ ∓ i sin ωτ)

= 2ω2 − bω sin ωτ ∓ i(2aω + bω cos ωτ)
1 + 2aτ + bτ cos ωτ ± i(2ωτ − bτ sin ωτ) .

Therefore, by (2.4), we find

Re dλ

dτ

∣∣∣∣
λ=iω

= Re dλ

dτ

∣∣∣∣
λ=−iω

= (2ω2 − bω sin ωτ)(1 + 2aτ + bτ cos ωτ) − (2aω + bω cos ωτ)(2ωτ − bτ sin ωτ)
(1 + 2aτ + bτ cos ωτ)2 + (2ωτ − bτ sin ωτ)2

= 2ω2 − bω sin ωτ

(1 + 2aτ + bτ cos ωτ)2 + (2ωτ − bτ sin ωτ)2

= {2(ω2 + a2 − c2) − b2}ω2

(ω2 + a2 − c2){(1 + 2aτ + bτ cos ωτ)2 + (2ωτ − bτ sin ωτ)2} .

From this and (2.7), it follows that

sgn
(

Re dλ

dτ

∣∣∣∣
λ=iω±

)
= sgn

(
{2(ω2

± + a2 − c2) − b2}(ω2
± + a2 − c2)

)

= sgn
(
{(b2 ±

√
D) − b2}(ω2

± + a2 − c2)
)

= sgn
(

±
√

D (ω2
± + a2 − c2)

)
. (2.9)

By (2.7) again, we have ω2
+ + a2 − c2 > 0, and relation (2.9) leads to

Re dλ

dτ

∣∣∣∣
λ=iω+

> 0 at τ = τ+
n (b > 0) or τ = σ+

n (b < 0) for n ∈ Z+.
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If (A1) and c − a > 0, then ω2
− + a2 − c2 < 0 by Lemma 2.3 (IIIa), and relation (2.9)

gives

Re dλ

dτ

∣∣∣∣
λ=iω−

> 0 at τ = σ−
n (b > 0) or τ = τ−

n (b < 0) for n ∈ Z+.

If (A1) and c − a < 0, then ω2
− + a2 − c2 > 0 by Lemma 2.3 (IIIb), and relation (2.9)

gives

Re dλ

dτ

∣∣∣∣
λ=iω−

< 0 at τ = τ−
n (b > 0) or τ = σ−

n (b < 0) for n ∈ Z+.

These facts above imply the assertions in Lemma 2.9.

Remark 2.10. In case (1.14) is satisfied, we find ω+ = ω− > 0 and

Re dλ

dτ

∣∣∣∣
λ=iω+

= 0 at τ = τ+
n = τ−

n (b > 0) or τ = σ+
n = σ−

n (b < 0) for n ∈ Z+.

Unfortunately, we cannot determine whether the roots ±iω+ enter the right half-plane
or the left half-plane as τ increases from τ+

n = τ−
n (b > 0) or σ+

n = σ−
n (b < 0).

Now we can prove Theorems 1.1 and 1.2. For simplicity, let N(τ) be the number
of roots of (2.1) at τ including multiplicity with positive real parts.

Proof of Theorem 1.1. By virtue of Lemma 2.1, it suffices to prove that all roots of
(2.1) have negative real parts if and only if any one of (1.2), (1.3), (1.4), (1.5), and
(1.6) holds under assumptions b > 0, (A0), and a+b+c > 0. We observe that N(0) = 0
because (2.1) has the only root −(a + b + c) for τ = 0, and hence, N(τ) = 0 for
sufficiently small τ > 0 by the continuity of the roots with respect to τ .

Let iω be a root of (2.1) with ω > 0. Our argument is divided into six cases in
Remark 2.4 under b > 0 and a + b + c > 0.

Case (a). Lemma 2.7 (i) indicates that (2.1) has no purely imaginary roots. From
Proposition 2.2, we conclude that N(τ) = 0 for τ > 0.

Case (b). Lemma 2.7 (ii) asserts that the values of ω and τ are given by

(ω, τ) = (ω+, τ+
n ), n ∈ Z+.

For τ > 0 and n ∈ Z+, let λ1,n(τ) and λ2,n(τ) be one pair of complex roots of (2.1)
with λ1,n(τ+

n ) = iω+ and λ2,n(τ+
n ) = −iω+. Lemma 2.9 (i) shows that as τ increases

from τ+
n , the roots λ1,n(τ) and λ2,n(τ) enter the right half-plane and cannot enter the

left half-plane across the imaginary axis. Taking into consideration that τ+
n < τ+

n+1 for
n ∈ Z+, we conclude that N(τ) = 0 for 0 < τ < τ+

0 and N(τ) ≥ 2 for τ > τ+
0 .

Case (c). Lemma 2.7 (iii) asserts that the values of ω and τ are given by

(ω, τ) = (ω+, τ+
n ), n ∈ Z+.

An argument similar to Case (b) yields N(τ) = 0 for 0 < τ < τ+
0 and N(τ) ≥ 2

for τ > τ+
0 .
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Case (d). This case cannot occur by assumption (A0).
Case (e). As stated in Remark 2.5, this case is equivalent to the case a − b + c > 0

and c − a > 0. Lemma 2.7 (v) asserts that the values of ω and τ are given by

(ω, τ) = (ω+, τ+
n ), (ω−, σ−

n ), n ∈ Z+.

For τ > 0 and n ∈ Z+, let λ1,n(τ), λ2,n(τ), λ3,n(τ), and λ4,n(τ) be two pairs of
complex roots of (2.1) with λ1,n(τ+

n ) = iω+, λ2,n(τ+
n ) = −iω+, λ3,n(σ−

n ) = iω−, and
λ4,n(σ−

n ) = −iω−. Lemma 2.9 (i) (resp. Lemma 2.9 (ii)) shows that as τ increases
from τ+

n (resp. σ−
n ), the roots λ1,n(τ) and λ2,n(τ) (resp. λ3,n(τ) and λ4,n(τ)) enter

the right half-plane and cannot enter the left half-plane across the imaginary axis.
Taking into consideration that τ+

n < τ+
n+1 and σ−

n < σ−
n+1 for n ∈ Z+, we have

min{τ+
n , σ−

n | n ∈ Z+} = min{τ+
0 , σ−

0 }.

Moreover, by (2.8), we obtain

0 < arccos
(

b(c − a)
ω2

+ + a2 − c2

)
< π < 2π − arccos

(
b(c − a)

ω2
− + a2 − c2

)
< 2π,

which implies that

τ+
0 = 1

ω+
arccos

(
b(c − a)

ω2
+ + a2 − c2

)
<

1
ω−

(
2π − arccos

(
b(c − a)

ω2
− + a2 − c2

))
= σ−

0 .

Therefore, we conclude that N(τ) = 0 for 0 < τ < τ+
0 and N(τ) ≥ 2 for τ > τ+

0 .
Case (f). Lemma 2.7 (vi) asserts that the values of ω and τ are given by

(ω, τ) = (ω+, τ+
n ), (ω−, τ−

n ), n ∈ Z+.

For τ > 0 and n ∈ Z+, let λ1,n(τ), λ2,n(τ), λ3,n(τ), and λ4,n(τ) be two pairs of
complex roots of (2.1) with λ1,n(τ+

n ) = iω+, λ2,n(τ+
n ) = −iω+, λ3,n(τ−

n ) = iω−,
and λ4,n(τ−

n ) = −iω−. Lemma 2.9 (i) shows that λ1,n(τ) and λ2,n(τ) enter the right
half-plane as τ increases from τ+

n . On the other hand, Lemma 2.9 (iii) shows that
λ3,n(τ) and λ4,n(τ) enter the left half-plane as τ increases from τ−

n . These facts mean
that λ1,n(τ) and λ2,n(τ) may cross the imaginary axis from right to left as τ increases
from τ+

n . Therefore, we will investigate the order of τ+
n and τ−

n . By (2.8), 0 < ω− < ω+,
and b(c − a) < 0, we observe that

0 >
b(c − a)

ω2
+ + a2 − c2 >

b(c − a)
ω2

− + a2 − c2 > −1,

which yields

0 < arccos
(

b(c − a)
ω2

+ + a2 − c2

)
< arccos

(
b(c − a)

ω2
− + a2 − c2

)
.

Hence, the definition of τ+
n and τ−

n leads to

τ+
n < τ−

n , n ∈ Z+. (2.10)
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In addition, from the evaluation

τ+
n+1 − τ+

n = 2π

ω+
<

2π

ω−
= τ−

n+1 − τ−
n , n ∈ Z+,

there exists a positive integer m = m(n) such that

τ−
n < τ+

m < τ−
n+1. (2.11)

Moreover, the number k defined by (1.7) is the smallest nonnegative integer satisfying
τ+

k+1 < τ−
k because

τ−
k − τ+

k+1 = τ−
0 + 2kπ

ω−
−
(

τ+
1 + 2kπ

ω+

)
> 0

is equivalent to

k >
ω+ω−(τ+

1 − τ−
0 )

2(ω+ − ω−)π .

Therefore, by (2.10), we obtain

0 < τ+
0 < τ−

0 < τ+
1 < τ−

1 < τ+
2 < . . . < τ−

k−1 < τ+
k < τ+

k+1 < τ−
k < . . .

From this and (2.11), it follows that




N(τ) = 0 if τ ∈ (0, τ+
0 ) ∪ (τ−

0 , τ+
1 ) ∪ (τ−

1 , τ+
2 ) ∪ . . . ∪ (τ−

k−1, τ+
k ),

N(τ) = 2 if τ ∈ (τ+
0 , τ−

0 ) ∪ (τ+
1 , τ−

1 ) ∪ . . . ∪ (τ+
k−1, τ−

k−1),
N(τ) ≥ 2 if τ ∈ (τ+

k , ∞),

which, together with Lemma 2.7 again, implies the conclusion as desired. The proof is
now complete.

Proof of Theorem 1.2. By virtue of Lemma 2.1, it suffices to prove that all roots of
(2.1) have negative real parts if and only if any one of (1.8), (1.9), (1.10), and (1.11)
holds under assumptions b < 0, (A0), and a + b + c > 0. We observe that N(0) = 0
because (2.1) has the only root −(a + b + c) for τ = 0, and hence, N(τ) = 0 for
sufficiently small τ > 0 by the continuity of the roots with respect to τ .

Let iω be a root of (2.1) with ω > 0. Our argument is divided into six cases in
Remark 2.4 under b < 0 and a + b + c > 0.

Case (a). Lemma 2.8 (i) indicates that (2.1) has no purely imaginary roots. From
Proposition 2.2, we conclude that N(τ) = 0 for τ > 0.

Case (b). This case cannot occur because a − b + c > a + b + c > 0.
Case (c). The case a − b + c = 0 and 2(a2 − c2) − b2 < 0 cannot occur because

a − b + c > a + b + c > 0. We consider the case a = c. Lemma 2.8 (ii) asserts that the
values of ω and τ are given by

(ω, τ) = (ω+, τ+
n ), n ∈ Z+.
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For τ > 0 and n ∈ Z+, let λ1,n(τ) and λ2,n(τ) be one pair of complex roots of (2.1)
with λ1,n(τ+

n ) = iω+ and λ2,n(τ+
n ) = −iω+. Lemma 2.9 (i) shows that as τ increases

from τ+
n , the roots λ1,n(τ) and λ2,n(τ) enter the right half-plane and cannot enter the

left half-plane across the imaginary axis. Taking into consideration that τ+
n < τ+

n+1 for
n ∈ Z+, we conclude that N(τ) = 0 for 0 < τ < τ+

0 and N(τ) ≥ 2 for τ > τ+
0 .

Case (d). This case cannot occur by assumption (A0).
Case (e). As stated in Remark 2.5, this case is equivalent to the case c − a > 0.

Lemma 2.8 (iv) asserts that the values of ω and τ are given by

(ω, τ) = (ω+, σ+
n ), (ω−, τ−

n ), n ∈ Z+.

For τ > 0 and n ∈ Z+, let λ1,n(τ), λ2,n(τ), λ3,n(τ), and λ4,n(τ) be two pairs of
complex roots of (2.1) with λ1,n(σ+

n ) = iω+, λ2,n(σ+
n ) = −iω+, λ3,n(τ−

n ) = iω−, and
λ4,n(τ−

n ) = −iω−. Lemma 2.9 (i) (resp. Lemma 2.9 (ii)) shows that as τ increases
from σ+

n (resp. τ−
n ), the roots λ1,n(τ) and λ2,n(τ) (resp. λ3,n(τ) and λ4,n(τ)) enter

the right half-plane and cannot enter the left half-plane across the imaginary axis.
Taking into consideration that σ+

n < σ+
n+1 and τ−

n < τ−
n+1 for n ∈ Z+, we have

min{σ+
n , τ−

n | n ∈ Z+} = min{σ+
0 , τ−

0 }.

Therefore, we conclude that N(τ) = 0 for 0 < τ < min{σ+
0 , τ−

0 } and N(τ) ≥ 2 for
τ > min{σ+

0 , τ−
0 }.

Case (f). Lemma 2.8 (v) asserts that the values of ω and τ are given by

(ω, τ) = (ω+, σ+
n ), (ω−, σ−

n ), n ∈ Z+.

For τ > 0 and n ∈ Z+, let λ1,n(τ), λ2,n(τ), λ3,n(τ), and λ4,n(τ) be two pairs of
complex roots of (2.1) with λ1,n(σ+

n ) = iω+, λ2,n(σ+
n ) = −iω+, λ3,n(σ−

n ) = iω−,
and λ4,n(σ−

n ) = −iω−. Lemma 2.9 (i) shows that λ1,n(τ) and λ2,n(τ) enter the right
half-plane as τ increases from σ+

n . On the other hand, Lemma 2.9 (iii) shows that
λ3,n(τ) and λ4,n(τ) enter the left half-plane as τ increases from σ−

n . These facts mean
that λ1,n(τ) and λ2,n(τ) may cross the imaginary axis from right to left as τ increases
from σ+

n . Therefore, we will investigate the order of σ+
n and σ−

n . By (2.8), 0 < ω− < ω+,
and b(c − a) > 0, we observe that

0 <
b(c − a)

ω2
+ + a2 − c2 <

b(c − a)
ω2

− + a2 − c2 < 1,

which yields

− arccos
(

b(c − a)
ω2

+ + a2 − c2

)
< − arccos

(
b(c − a)

ω2
− + a2 − c2

)
.

Hence, the definition of σ+
n and σ−

n leads to

σ+
n < σ−

n , n ∈ Z+. (2.12)
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In addition, from the evaluation

σ+
n+1 − σ+

n = 2π

ω+
<

2π

ω−
= σ−

n+1 − σ−
n , n ∈ Z+,

there exists a positive integer m = m(n) such that

σ−
n < σ+

m < σ−
n+1. (2.13)

Moreover, the number ℓ defined by (1.12) is the smallest nonnegative integer satisfying
σ+

ℓ+1 < σ−
ℓ because

σ−
ℓ − σ+

ℓ+1 = σ−
0 + 2ℓπ

ω−
−
(

σ+
1 + 2ℓπ

ω+

)
> 0

is equivalent to

ℓ >
ω+ω−(σ+

1 − σ−
0 )

2(ω+ − ω−)π .

Therefore, by (2.12), we obtain

0 < σ+
0 < σ−

0 < σ+
1 < σ−

1 < σ+
2 < . . . < σ−

ℓ−1 < σ+
ℓ < σ+

ℓ+1 < σ−
ℓ < . . . .

From this and (2.13), it follows that




N(τ) = 0 if τ ∈ (0, σ+
0 ) ∪ (σ−

0 , σ+
1 ) ∪ (σ−

1 , σ+
2 ) ∪ . . . ∪ (σ−

ℓ−1, σ+
ℓ ),

N(τ) = 2 if τ ∈ (σ+
0 , σ−

0 ) ∪ (σ+
1 , σ−

1 ) ∪ . . . ∪ (σ+
ℓ−1, σ−

ℓ−1),
N(τ) ≥ 2 if τ ∈ (σ+

ℓ , ∞),

which, together with Lemma 2.8 again, yields the conclusion as desired. The proof is
now complete.
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