PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the mechanical and hygrothermal behavior of coffee ground wastes valorized as a building material: analysis of mix designs performance and sorption curve linearization effect

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coffee ground wastes (CGW) are by-products from the coffee-making processes. In this study, we propose to valorize them in construction materials at large scale. In particular, we investigate the mechanical and hygrothermal performances of earthen cob construction with incorporation of various amounts of CGW. Our results indicate that adding coffee grounds to cob enhances its hygrothermal performances as well as its compressive strength. An interesting enhancement of the lightened earth thermal characteristics as well as a good control of the hydric load in the air while maintaining acceptable mechanical properties is observed. Numerical analysis is used to evaluate the hygrothermal behavior of cob specimens to better understand their energy performances. A simplification of the simulation methods using a linearization of the sorption curve is incorporated to reduce calculation times and optimize outputs. The method is validated using experimental data, which shows a promising improvement compared to previous approaches. The proposed method can be faithfully applied to the study of hygrothermal behavior of biomaterials, which is strongly related to the building energy performance and the investigation of their durability in a fast and effcient way.
Rocznik
Strony
art. no. e57, 2023
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
  • Laboratoire ESITC Caen - COMUE Normandie Université, 1 Rue Pierre Et Marie Curie, 14610 Epron, France
  • CRISMAT, UMR CNRS N°6508, ENSICAEN, IUT Caen, Normandie Université, 6 Boulevard Maréchal Juin, 14050 Caen, France
  • Laboratoire ESITC Caen - COMUE Normandie Université, 1 Rue Pierre Et Marie Curie, 14610 Epron, France
  • Laboratoire ESITC Caen - COMUE Normandie Université, 1 Rue Pierre Et Marie Curie, 14610 Epron, France
  • CRISMAT, UMR CNRS N°6508, ENSICAEN, IUT Caen, Normandie Université, 6 Boulevard Maréchal Juin, 14050 Caen, France
  • CRISMAT, UMR CNRS N°6508, ENSICAEN, IUT Caen, Normandie Université, 6 Boulevard Maréchal Juin, 14050 Caen, France
Bibliografia
  • 1. Esfanjary Kenari E. Persian historic urban landscapes interpreting and managing Maibud over 6000 years. Edinburgh University Press; 2017.
  • 2. Bouasria M, El Mendili Y, Benzaama M-H, Pralong V, Bardeau J-F, Hennequart F. Valorisation of stranded laminaria digitata seaweed as an insulating earth material. Constr Build Mater. 2021;308: 125068. https://doi.org/10.1016/j.conbuildmat.2021.125068.
  • 3. Rifat MASB. Building energy consumption and carbon dioxide emissions: threat to climate change. J Earth Sci Clim Change. 2015. https://doi.org/10.4172/2157-7617.S3-001.
  • 4. Lekshmi MS, Vishnudas S, Nair DG. An investigation on the potential of mud as sustainable building material in the context of Kerala. Int J Energy Technol Policy. 2017;13(1-2):107-22. https://doi.org/10.1504/IJETP.2017.080621.
  • 5. El Mendili Y, et al. Mud-based construction material: promising properties of French gravel wash mud mixed with byproducts, seashells and fly ash as a binder. Materials. 2021;14(20):20. https://doi.org/10.3390/ma14206216.
  • 6. Miccoli L, Müller U, Fontana P. Mechanical behaviour of earthen materials: a comparison between earth block masonry, rammed earth and cob. Constr Build Mater. 2014;61:327-39. https://doi.org/10.1016/j.conbuildmat.2014.03.009.
  • 7. Bekhiti M, Trouzine H, Rabehi M. Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Constr Build Mater. 2019;208:304-13. https://doi.org/10.1016/j.conbuildmat.2019.03.011.
  • 8. Chang I, et al. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp Geotech. 2020;24: 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
  • 9. Chang I, Im J, Cho G-C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability. 2016;8(3):3. https://doi.org/10.3390/su8030251.
  • 10. Ben-Hur M, Malik M, Letey J, Mingelgrin U. Adsorption of polymers on clays as affected by clay charge and structure, polymer properties, and water quality. Soil Sci. 1992. https://doi.org/10.1097/00010694-199205000-00002.
  • 11. Vásquez-Garay F, Carrillo-Varela I, Vidal C, Reyes-Contreras P, Faccini M, Teixeira Mendonça R. A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability. 2021;13(5):5. https://doi.org/10.3390/su13052697.
  • 12. Cerino-Córdova FJ, Dávila-Guzmán NE, García León AM, Salazar-Rabago JJ, Soto-Regalado E. Revalorization of coffee waste. In: Toledo Castanheira D, editor. Cofee - production and research. IntechOpen; 2020. p. 5-10.
  • 13. Levy D, Reinecke J, Manning S. The political dynamics of sustainable coffee: contested value regimes and the transformation of sustainability. J Manag Stud. 2016;53(3):364-401. https://doi. org/10.1111/joms.12144.
  • 14. International Coffee Organization - What’s New. https://www.ico.org/. Accessed 13 Feb 2022.
  • 15. Mata TM, Martins AA, Caetano NS. Bio-refinery approach for spent coffee grounds valorization. Bioresour Technol. 2018;247:1077-84. https://doi.org/10.1016/j.biortech.2017.09.106.
  • 16. Pujol D, et al. The chemical composition of exhausted coffee waste. Ind Crops Prod. 2013;50:423-9. https://doi.org/10.1016/j. Indcrop.2013.07.056.
  • 17. Mussatto SI, Machado EMS, Martins S, Teixeira JA. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011;4(5):661. https://doi.org/10.1007/s11947-011-0565-z.
  • 18. Abahri K, Belarbi R, Oudjehani N, Issaadi N, Ferroukhi M. Total pressure gradient incidence on hygrothermal transfer in highly porous building materials. Adv Mater Res. 2013;772:124-9. https://doi.org/10.4028/www.scientifc.net/AMR.772.124.
  • 19. Ferroukhi MY, Djedjig R, Limam K, Belarbi R. Hygrothermal behavior modeling of the hygroscopic envelopes of buildings: a dynamic co-simulation approach. Build Simul. 2016;9(5):501-12. https://doi.org/10.1007/s12273-016-0292-5.
  • 20. Slimani Z, Trabelsi A, Virgone J, Zanetti Freire R. Study of the hygrothermal behavior of wood fiber insulation subjected to non-isothermal loading. Appl Sci. 2019;9(11):11. https://doi.org/10.3390/app9112359.
  • 21. Alioua T, Agoudjil B, Chennouf N, Boudenne A, Benzarti K. Investigation on heat and moisture transfer in bio-based building wall with consideration of the hysteresis efect. Build Environ. 2019;163: 106333. https://doi.org/10.1016/j.buildenv.2019.106333.
  • 22. Hamdaoui M-A, Benzaama M-H, El Mendili Y, Chateigner D. A review on physical and data-driven modeling of buildings hygrothermal behavior: models, approaches and simulation tools. Energy Build. 2021;251: 111343. https://doi.org/10.1016/j.enbui ld.2021.111343.
  • 23. Zhang Z, Thiery M, Baroghel-Bouny V. A review and statistical study of existing hysteresis models for cementitious materials. Cem Concr Res. 2014;57:44. https://doi.org/10.1016/j.cemconres.2013.12.008.
  • 24. Mualem Y. Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resour Res. 1973;9(5):1324-31. https://doi.org/10.1029/WR009i005p01324.
  • 25. Mualem Y. A conceptual model of hysteresis. Water Resour Res. 1974;10(3):3. https://doi.org/10.1029/WR010i003p00514.
  • 26. Promis G, Douzane O, Le Tran AD, Langlet T. Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state. Energy Build. 2018;166:450-9. https://doi.org/10.1016/j.enbuild.2018.01.067.
  • 27. Lelievre D, Colinart T, Glouannec P. Hygrothermal behavior of bio-based building materials including hysteresis effects: experimental and numerical analyses. Energy Build. 2014;84:617-27. https://doi.org/10.1016/j.enbuild.2014.09.013.
  • 28. Zhang X, Chen B, Riaz Ahmad M. Characterization of a novel bio-insulation material for multilayer wall and research on hysteresis effect. Constr Build Mater. 2021;290:123162. https://doi. org/10.1016/j.conbuildmat.2021.123162.
  • 29. Patera A, Derluyn H, Derome D, Carmeliet J. Infuence of sorption hysteresis on moisture transport in wood. Wood Sci Technol. 2016;50(2):259-83. https://doi.org/10.1007/s00226-015-0786-9.
  • 30. Volhard F. Light earth building: a handbook for building with wood and earth. Walter de Gruyter GmbH; 2016.
  • 31. Sluiter A, Hames B, Ruiz RO, Scarlata C, Sluiter J, Templeton D. Determination of structural carbohydrates and lignin in biomass. Biomass Anal Technol Team Lab Anal Proced. 2004;2011:1-14.
  • 32. Mussatto SI, Ballesteros LF, Martins S, Teixeira JA. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep Purif Technol. 2011;83:173-9. https://doi.org/10.1016/j.seppur. 2011.09.036.
  • 33. Grembecka M, Malinowska E, Szefer P. Differentiation of market coffee and its infusions in view of their mineral composition. Sci Total Environ. 2007;383:59-69. https://doi.org/10.1016/j.scitotenv.2007.04.031.
  • 34. Köbbing J, Thevs N, Zerbe S, Wichtmann W, Couwenberg J. The utilisation of reed (Phragmites australis): a review,” undefined, 2013. [Online]. Available: https://www.semanticscholar.org/ paper/The-utilisation-of-reed-(Phragmites-australis)%3A-a-K% C3%B6bbing-Thevs/307c5503de54c11cdbd325f1f28491b561c c75eb. Accessed 15 Feb 2022.
  • 35. Gražulis S, et al. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012;40:420-7. https://doi.org/10.1093/nar/gkr900.
  • 36. Lutterotti L, Matthies S, Wenk H-R, Schultz AS, Richardson JW. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81(2):594-600. https://doi.org/10.1063/1.364220.
  • 37. El Mendili Y, et al. Combined XRF, XRD, SEM-EDS, and Raman analyses on serpentinized harzburgite (Nickel Laterite Mine, New Caledonia): implications for exploration and geometallurgy. ACS Earth Space Chem. 2019;3:2237-49. https://doi.org/10.1021/acsearthspacechem.9b00014.
  • 38. Meinhold G. Rutile and its applications in earth sciences. EarthSci Rev. 2010;102(1):1-28. https://doi.org/10.1016/j.earscirev. 2010.06.001.
  • 39. Stanienda KJ. Carbonate phases rich in magnesium in the Triassic limestones of the eastern part of the Germanic Basin. Carbonates Evaporites. 2016;31(4):387-405. https://doi.org/10.1007/s13146-016-0297-2.
  • 40. Andrade FA, Al-Qureshi HA, Hotza D. Measuring the plasticity of clays: a review. Appl Clay Sci. 2011;51(1):1-7. https://doi.org/10.1016/j.clay.2010.10.028.
  • 41. Hillel D. Soil physical attributes. In: Hillel D, editor. Soil in the environment. San Diego: Academic Press; 2008. p. 55-77.
  • 42. Miranda-Trevino JC, Coles CA. Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci. 2003;23(1):133-9. https://doi.org/10.1016/S0169-1317(03)00095-4.
  • 43. NF EN ISO 12572. Afnor EDITIONS. https://www.boutique. afnor.org/fr-fr/norme/nf-en-iso-12572/performance-hygrotherm ique-des-materiaux-et-produits-pour-le-batiment-deter/fa184538/57928. Accessed 27 Jul 2022.
  • 44. NF ISO 5017. Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-iso-5017/produits-refractaires-faconnesdenses-determination-de-la-masse-volumique-a/fa169530/41164. Accessed 27 Jul 2022.
  • 45. NF EN ISO 11357-4. Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-113574/plastiques-analyse-calor imetrique-diferentielle-dsc-partie-4-determination/fa199556/238238. Accessed 27 Jul 2022.
  • 46. NF EN ISO 12571. Afnor EDITIONS. https://m.boutique.afnor.org/fr-fr/norme/nf-en-iso-12571/performance-hygrothermiquedes-materiaux-et-produits-pour-le-batiment-deter/fa177734/42249. Accessed 27 Jul 2022.
  • 47. Andrade R, Pérez C. Models of sorption isotherms for food: uses and limitations. Vitae Rev Fac Quimica Farm. 2011;18:325-34.
  • 48. Moodley P, Trois C. Lignocellulosic biorefneries: the path forward. In: Ray RC, editor. Sustainable biofuels. Academic Press; 2021. p. 21-42.
  • 49. Glasser WG, Barnett CA, Sano Y. Classification of lignins with different genetic and industrial origins. J Appl Polym Sci Appl Polym Symp U. S. Art. no. CONF-8205234-Vol.1, Jan. 1983. [Online]. Available: https://www.osti.gov/biblio/7146700-class ification-lignins-different-genetic-industrial-origins. Accessed 27 Feb 2022.
  • 50. Sena da Fonseca B, Vilão A, Galhano C, Simão JAR. Reusing coffee waste in manufacture of ceramics for construction. Adv Appl Ceram. 2014;113(3):159-66. https://doi.org/10.1179/1743676113Y.0000000131.
  • 51. Eliche-Quesada D, et al. The use of different forms of waste in the manufacture of ceramic bricks. Appl Clay Sci. 2011;52:270-6. https://doi.org/10.1016/j.clay.2011.03.003.
  • 52. Künzel HM. Simultaneous heat and moisture transport in building components: one- and two-dimensional calculation using simple parameters. Stuttgart: IRB-Verl; 1995.
  • 53. Maarouf M. Experimental and numerical highlighting of water vapor sorption hysteresis in the coupled heat and moisture transfers. J Build Eng. 2021;40:102321.
  • 54. Rémond R, Almeida G, Perré P. The gripped-box model: a simple and robust formulation of sorption hysteresis for lignocellulosic materials. Constr Build Mater. 2018;170:716-24. https://doi.org/10.1016/j.conbuildmat.2018.02.116.
  • 55. Zhang Z. Modelling of sorption hysteresis and its effect on moisture transport within cementitious materials. p. 237.
  • 56. Huang H-C, Tan Y-C, Liu C-W, Chen C-H. A novel hysteresis model in unsaturated soil. Hydrol Process. 2005;19(8):1653-65. https://doi.org/10.1002/hyp.5594.
  • 57. Haba B, Agoudjil B, Boudenne A, Benzarti K. Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr Build Mater. 2017;154:963-71. https://doi.org/10.1016/j.conbuildmat.2017.08.025.
  • 58. Benmansour N, Agoudjil B, Gherabli A, Kareche A, Boudenne A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014;81:98-104. https://doi.org/10.1016/j.enbuild. 2014.05.032.
  • 59. Chennouf N, Agoudjil B, Alioua T, Boudenne A, Benzarti K. Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers. Energy Build. 2019;202: 109413. https://doi.org/10.1016/j.enbui ld.2019.109413.
  • 60. Mendes N, Philippi PC, Lamberts R. A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media. Int J Heat Mass Transf. 2002;45(3):509-18. https://doi.org/10.1016/S0017-9310(01)00172-7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0885721c-4c98-426b-ba83-8b0e52fc8f07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.