PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Asymmetrical Bending Pipe with Different Gating Systems on Low-Pressure Metal Mold Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To prepare a high-quality asymmetrical bending pipe of aluminum alloy by casting, the parting surfaces of the asymmetrical parts were determined based on the characteristics of the parts. Also, the forming process was designed and calculated. After that, the different types of gating systems were designed and the casting process was calculated by ProCAST, and then the influence of different casting gating systems on asymmetrical bending pipes was analyzed. The simulation results show that in the solidification process, although the filling speed of the single runner was slow, but the filling was stable. The gating system with a single runner-round flange filling system would lead to being more uniform for filling flow field and be sequential solidification of temperature field distribution, and stronger of the feeding ability. During the solidification process, the solid phase ratio of the single runner-round flange casting system is larger, and the shrinkage volume is smaller, which made the quality of castings better. Finally, a metal mold and core were made to cast a perfect asymmetric bending pipe of aluminum alloy product in a die casting machine. So the single runner-round flange filling system is suitable for asymmetrical bending pipe casting.
Rocznik
Strony
83--102
Opis fizyczny
Bibliogr. 31 poz., il., tab., wykr.
Twórcy
autor
  • School of Mechanical & Electrical Engineering, Guizhou Normal University
autor
  • School of Mechanical & Electrical Engineering, Guizhou Normal University
autor
  • School of Mechanical & Electrical Engineering, Guizhou Normal University
autor
  • Guiyang Huaheng Mechanical Manufacture CO.,LTD, China
Bibliografia
  • [1] Zhang, M. & Chen, L.F. (2011). A Review of the Development of Aluminum Alloy Casting Process in High-voltage Switchgear. High voltage apparatus. 47(4), 75-83. https://doi.org/10.13296/j.1001-1609.hva.2011.04.016.
  • [2] Jiang, Z. (2012). Numerical Simulation of Die-casting Process of Aluminum Alloy End Cap. Precision Forming Engineering. 4(1), 30-33.
  • [3] Zheng, X.Q., Xie, S.K., Yi, R.X. & Guo, X.Y. (2016). Low Pressure Casting Technology: Development History, Research Status and Future Trend. Material Guide. 30(07), 74-80+85. https://doi.org/10.11896/j.issn.1005-023X.2016.07.013.
  • [4] Qian, Y.J., Cheng, Z.H. & Yu, H. (2012). Application of Numerical Simulation in Casting. Precision Forming Engineering. 4(4), 39-43.
  • [5] Li, L.Y., Wang, X., Sun, K.S., Gao, C. & Zhang, B.R. (2022). Effects of Sand Casting and Low Pressure Casting on the Microstructure and Mechanical Properties of Ultra Long Aluminum Alloy Box Dyeing. Foundry Technology. 43(03), 197-202. https://doi.org/10.16410/j.issn1000-8365.2022.03.007.
  • [6] Zhang, X.Y & Yang X.L. (2010). Discussion on Technological Progress of Metal Mold. Casting Foundry Technology. 31(11), 1524-1526.
  • [7] Yan, S.Q., Lin, Y.X., Zheng, K.K. & Fan, Y.P. (2019). Research Progress in Coatings for Metal Mold. Casting Hot working process. 48(03), 11-14. https://doi.org/10.14158/j.cnki.1001-3814.2019.03.003.
  • [8] Zhang, J.Y. (2021). Special Casting Process Method. World Nonferrous Metals. (9), 141-142.
  • [9] Xu, X.L., Qiao, X.H., Yang, Y., Mou, Y.H. (2022). Casting Process Optimization and Application of Large Runner Water Jet Propulsion Parts. In Chongqing Foundry Annual Conference. Chongqing, China. https://doi.org/10.26914/c.cnkihy.2022.008747.
  • [10] Liang, Y.D., Liu, Q.Z., Hao, C.S., Lu, D.B., Hao, Y., Jiang, L., & Li, S.J. (2022). Example Analysis of Sand Mold Low Pressure Casting Process Design for Aluminum Alloy Complex Thin-walled Parts. China Foundry Equipment and Technology. 57(3), 87-90. https://doi.org/10.3969/j.issn.1006-9658.2022.03.020.
  • [11] Zhang, L.Q. & Wang, R.J. (2012). Design of LPDC Process for Thin-walled Casting Based on Numerical Simulation. Applied Mechanics and Materials. 217-219, 1786-1790. https://doi.org/10.4028/www.scientific.net/AMM.217-219.1786.
  • [12] Zhang, L.Q. & Wang, R.J. (2012). Numerical Simulation of LPDC Process for Thin-walled Aluminum Alloy. Advanced Materials Research. 538-541, 474-478. https://doi.org/10.4028/www.scientific.net/AMR.538-541.474.
  • [13] Liu, J.D., Zou, X.H., Zou, X.D. & Chai, S.L. (2022). Setting of Low Pressure Casting Pressure Curve for Aluminum Alloy Cylinder Block Castings. Metalworking (hot working). 6, 111-113.
  • [14] Liu, J.G., Zhang, Y.M, Fang, X.G, Wang, D.F, Yang, Y.W. & Wu, Z.R. (2020). Design and Optimization of Low Pressure Casting Process for Multi-function Display Console. Casting. 69(12), 1325-1330.
  • [15] Horr, A.M., Angermeier, C. & Harrison, A. (2014). Full Through Process Simulation for Low Pressure Die Casting – from Casting to Design. Materials Science Forum. 794-796, 118-123. https://doi.org/10.4028/www.scientific.net/MSF.794-796.118.
  • [16] Dhisale, M., Vasavada, J. & Tewari, A. (2022). An Approach to Optimize Cooling Channel Parameters of Low Pressure Die Casting Process for Reducing Shrinkage Porosity in Aluminium Alloy Wheels. Materials Today: Proceedings. 62(6), 3189-3196. https://doi.org/10.1016/j.matpr.2022.03.478.
  • [17] Li, A., Wu, M. (2003). Practical Manual of Casting Process Design Technology and Production Quality Control, Golden Publishing House.
  • [18] Liang, M.J. (2004). Research on CAD Technology of Aluminum Alloy Low Pressure Casting Process [D], North China Institute of Technology.
  • [19] Gao, X.Y. (1997). A Cubic Equation Method for Calculating Riser Size and Its Application. Foundry Technology. (04), 7-10.
  • [20] Dong, X.Q., Wang, D. & Wang, C.Z. (2003). Theory and Practice of Low Pressure and Differential Pressure Casting, China Machine Press.
  • [21] Dojka, R., Jezierski, J. & Campbell, J. (2018). Optimized Gating System for Steel Castings. Journal of Materials Engineering and Performance. 27(10), 5152-5163. https://doi.org/10.1007/s11665-018-3497-1.
  • [22] Dojka, R., Jezierski, J. & Tiedje, N.S. (2019). Geometric Form of Gating System Elements and Its Influence on the Initial Filling Phase. Journal of Materials Engineering and Performance. 28(7), 3922-3928. https://doi.org/10.1007/s11665-019-03973-9.
  • [23] Dojka, R., Jezierski, J. & Szucki, M. (2022). The Importance of the Geometry of the Down Sprue in the Gravity Casting Process. Materials. 15(14), 4937, 1-31. https://www.mdpi.com/1996-1944/15/14/4937.
  • [24] Zhang, F., Kang, Y.L., Yang, L.Q. & Ding, R.H. (2010). The Influence of Pouring Temperature on the Cooling Law of Alloy Melt and Semi-solid Structure. Journal of Beijing University of Science and Technology. 32(11), 1453-1458. doi:10.13374/j.issn1001-053x.2010.11.014.
  • [25] Qin, T. & Xu, N.B. (2012). The Influence of Pouring Temperature on Rotor Quality Was Explored by ProCAST. Modern Cast Iron. 32(03), 74-77. https://doi.org/10.3969/j.issn.1003-8345.2012.03.014.
  • [26] Zheng, Q., Xiao, Y., Zhang, T., Zhu, P., Ma, W. & Liu, J. (2020). Numerical Simulation of Latent Heat of Solidification for Low Pressure Casting of Aluminum Alloy Wheels. Metals. 10(8), 1-12. https://doi: 10.3390/met10081024.
  • [27] Vijayaram, T.R., Sulaiman, S., Hamouda, A. & Ahmad, M. (2006). Numerical Simulation of Casting Solidification in Permanent Metallic Molds. Journal of materials processing technology. 178(1-3), 29-33. https://doi: 10.1016/j.jmatprotec. 2005.09.025.
  • [28] Thompson, S., Cockcroft, S. & Wells, M. (2004). Advanced Light Metals Casting Development: Solidification of Aluminium Alloy A356. Materials Science and Technology. 20(2), 194-200. https://doi:10.1179/026708304225011199.
  • [29] Jiang, L., Cheng, J.M., Li, S.J., Lu, D.B., Sun, Xi.L., Liang, Y.D., & Liu, N. (2022). Case Study of Die Design for Aaluminum Alloy Castings. China Foundry Equipment and Technology. 57(3), 13-15. https://doi.org/10.3969/j.issn.1006-9658.2022.03.002.
  • [30] Jiang, L., Cheng, J.M., Li, S.J., Sun, X.L., Zhao. N.N., Yu, C. & Liu, N. (2022). Design of Metal Mold for Oil Separator of Aluminum Alloy Castings. China Foundry Equipment and Technology. 57(2), 92-94. https://doi.org/10.3969/j.issn.1006-9658.2022.02.015.
  • [31] Zhang, Z., Wang, P.P., Chen, H.S., Qian, Q.H., Xu, G.B. & Dong, W. (2016). Study on Low Pressure Metal Mold Casting Process of CRH380A Case Cover. Casting equipment and process. 2, 11-13. https://doi.org/10.16666/j.cnki.issn1004-6178.2016.02.005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08843117-070c-41fc-ac64-79d6bc49ca46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.