PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of organic additives on electrodeposition of tin from acid sulfate solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ dodatków organicznych na katodowe osadzanie cyny z kwaśnego roztworu siarczanowego
Języki publikacji
EN
Abstrakty
EN
Basic electrochemical experiments on the kinetics of tin deposition from an acid sulfate solution containing organic additives were performed. The measurements showed that tin deposits with activation polarization in a narrow potential range. Organic additives like gelatin and β-naphtol inhibit the charge transfer stage of the cathodic reaction due to the formation of adsorption layers. In turn, the gluconate ions increase the rate of tin deposition due to the bonding of hydrogen ions and inhibiting hydrogen coevolution. This results in serious changes in the morphology of tin deposits from isolated polyhedron crystals (no additive) via rectangular plates (β-naphtol) and thin plates (sodium gluconate) to rounded grains (gelatin).
PL
Przeprowadzono podstawowe badania elektrochemiczne osadzania cyny z kwaśnego roztworu siarczanowego zawierającego dodatki organiczne. Pomiary wykazały, że cyna wydziela się w zakresie polaryzacji aktywacyjnej w stosunkowo wąskim przedziale potencjałów. Dodatki organiczne jak żelatyna i β-naftol hamują proces przeniesienia ładunku przez granicę faz wskutek tworzenia warstw adsorpcyjnych. Z kolei jony glukonianowe zwiększają szybkość osadzania cyny przez wiązanie jonów wodorowych i hamowanie współwydzielania wodoru. Powoduje to poważne zmiany morfologii osadów katodowych: od wielościennych kryształów cyny (brak dodatków), przez tworzenie prostokątnych ziaren płytkowych (β-naftol) i cienkich płytek (glukonian sodu), do ziaren o zaokrąglonych kształtach (żelatyna).
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Krakow, Poland
Bibliografia
  • [1] Walsh F.C., Low C.T.J.: A review of developments in the electrodeposition of tin. Surface and Coatings Technology, 288 (2016), 79–94
  • [2] Jiang B., Xian A-P.: Whisker growth on tin finishes of different electrolytes. Microelectronics Reliability, 48 (2008), 105–110
  • [3] Oniciu L., Muresan L.: Some fundamental aspects of levelling and brightening in metal electrodeposition. Journal of Applied Electrochemistry, 21 (1991), 565–574
  • [4] Tzeng G.S., Lin S.H., Wang Y.Y., Wan C.C.: Effect of additives on the electrodeposition of tin from an acidic Sn(II) bath. Journal of Applied Electrochemistry, 26 (1996), 419–423
  • [5] Sharma A., Das K., Fecht H.-J., Das S.: Effect of various additives on morphological and structural characteristics of pulse electrodeposited tin coatings from stannous sulfate electrolyte. Applied Surface Science, 314 (2014), 516–522
  • [6] Charrouf M., Bakkali S., Cherkaoui M., El Amrani M.: Influence of decyl glucoside on the electrodeposition of tin. Journal of Serbian Chemical Society, 71, 6 (2006), 661–668
  • [7] Sekar R., Eagammai C., Jayakrishnan S.: Effect of additives on electrodeposition of tin and its structural and corrosion behavior. Journal of Applied Electrochemistry, 20 (2010), 49–57
  • [8] Xiao F., Shen X., Ren F., Volinsky A.A.: Additive effects on tin electrodepositing in acid sulfate electrolytes. International Journal of Minerals, Metallurgy and Materials, 20, 5 (2013), 472–478
  • [9] Medvedev G.I., Makrushin N.A.: Electrodeposition of tin from sulfate electrolyte in the presence of syntanol, formaldehyde, and allyl alcohol. Russian Journal of Applied Chemistry, 77, 11 (2004), 1781–1785
  • [10] Benabida A., Cherkaoui M.: Improvement of the tin electrodeposition in the presence of sesame oil additive. Journal of Materials and Environmental Science, 6, 12 (2015), 3436–3442
  • [11] Kaneko N., Shinohara N., Nezu H.: Effects of aromatic carbonyl compounds on the surface morphology and crystal orientation of electrodeposited tin from acid stannous sulfate solution. Electrochimica Acta, 37, 13 (1992), 2403–2409
  • [12] Kaneko N., Shinohara N., Nezu H.: Effects of N, N bis(polyoxyethylene)octadecylamines on the electrocrystallization of tin from acid stannous sulfate solution. Electrochimica Acta, 36, 5/6 (1991), 985–990
  • [13] He A., Liu Q., Ivey, D.G.: Electrodeposition of tin: a simple approach. Journal of Materials Science: Materials in Electronics, 19 (2008), 533–562
  • [14] Guaus E., Torrent-Burgues J.: Voltammetric study of Sn(II) reduction on a glassy-carbon electrode from sulfate-tartrate baths. Russian Journal of Electrochemistry, 42, 2 (2006), 141–146
  • [15] Rudnik E., Włoch G.: Studies on the electrodeposition of tin from acidic chloride-gluconate solutions. Applied Surface Science, 265 (2013), 839–849
  • [16] Rudnik E.: Effect of anions on the electrodeposition of tin from acidic gluconate baths. Ionics, 19, 7 (2013), 1047–1059
  • [17] Gomez E., Guaus E., Sanz F., Valles E.: Tin electrodeposition on carbon electrodes. From nuclei to microcrystallites. Journal of Electroanalytical Chemistry, 465 (1999), 63–71
  • [18] Torrent-Burgues J., Guaus E., Sanz F.: Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate. Journal of Applied Electrochemistry, 32 (2002), 225–230
  • [19] Lee J.-Y., Kim J.-W., Chang B.-Y., Kim H.T., Park S.-M.: Effects of ethoxylated α-naphtholsulfonic acid on tin electroplating at iron electrodes. Journal of the Electrochemical Society, 151 (2004), C333–C341
  • [20] Low C.T.J., Kerr C., Des Barker B., Smith J.R., Campbell S.A., Walsh F.C.: Electrochemistry of tin deposition from mixed sulphate and methanesulphonate electrolyte. Transactions of the Institute of Metal Finishing, 86, 3 (2008), 148–152
  • [21] Meibuhr S., Yeager E., Kozawa A., Hovorka F.: The electrochemistry of tin. I: Effects of nonionic addition agents on electrodeposition from stannous sulfate solutions. Journal of the Electrochemical Society, 110, 3 (1963), 190–202
  • [22] Sharma A., Bhattacharya S., Das S., Das K.: A study on the effect of pulse electrodeposition parameters on the morphology of pure tin coatings. Metallurgical and Materials Transactions A, 45, 10 (2014), 4610–4622
  • [23] Safizadeh F., Lafront A.M., Ghali E., Houlachi G.: Monitoring the influence of gelatin and thiourea on copper electrodeposition employing electrochemical noise technique. Canadian Metallurgical Quarterly, 49, 1 (2010), 21–28
  • [24] Ashiru O.A.: Gelatin inhibition of a silver plating process. Plating and Surface Finishing, 82, 4 (1995), 76–82
  • [25] Song K.-D., Kim K.-B., Han S.-H., Lee H.: Effect of additives on hydrogen evolution and absorption during Zn electrodeposition investigated by EQCM. Electrochemical and Solid-State Letters, 7, 2 (2004), C20–C24
  • [26] Rudnik E.: Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions. Journal of Electroanalytical Chemistry, 741 (2015), 20–31
  • [27] Rudnik E.: The influence of sulfate ions on the electrodeposition of Ni-Sn alloys from acidic chloride-gluconate baths. Journal of Electroanalytical Chemistry, 726 (2014), 97–106
  • [28] Rudnik E., Włoch G.: The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths. Ionics, 20, 12 (2014), 1747–1755
  • [29] Instructions for electrodepositing tin. 6th ed. International Tin Research Institute (UK), 1980
  • [30] Revie R.W., Uhlig H.H.: Corrosion and corrosion control. John Wiley & Sons, Hoboken, New Jersey, 2008, 62
  • [31] The UPAC stability constants database, Academic Software and IUMAC, 1992–2000
  • [32] Greef R., Peat R., Peter L.M., Pletcher D., Robinson J.: Instrumental methods in electrochemistry. Ellis Horwood, Chichester 1985
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-088416b6-2e3d-42b8-9569-a2941a538b76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.