PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of polyacrylic acid molar mass as a surface modifier on rheological properties of calcium carbonate suspensions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Suspensions of calcium carbonate are of a major concern in various fields, such as coating, painting and ceramics and their rheological properties are very important. The effect of polyacrylic acid (PAA) of different molecular mass as a surface modifier on the surface and rheological properties of the aqueous suspension of calcium carbonate was investigated. The effect of the volume fraction of particles and polymer concentration on the viscosity at lower shear rate was discussed. The flow behavior of the concentrated suspension in the presence of PAA can be explained by the difference of the repulsive force among particles, induced by the adsorbed polymer. The results showed that the dispersibility is more pronounced by the steric hindrance behavior rather than the electrostatic behavior.
Rocznik
Strony
18--26
Opis fizyczny
Bibliogr. 34 poz., rys. kolor.
Twórcy
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
  • Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Qena, Egypt
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
Bibliografia
  • ABDEL-KHALEK, M.A., ABDEL-RAHMAN, M.K., FRANCIS, A.A., 2020. Experimental Design and Desirability Analysis for Optimizing the Bio-sorption of Liquid Paint-related Wastes onto Solid Eggshell Wastes, Environmental Processes, 7, 2, 493-508.
  • ADEYEMO, A.A., ADEOYE, I.O., BELLO, O.S., 2017. Adsorption of dyes using different types of clay: a review, Appl. Water Sci., 7, 543–568.
  • AL-QURAISSHI, K.K., HE, Q., KAUPPILA, W., WANG, M., YANG, Y., 2020. Mechanical testing of two-dimensional materials: a brief review, International Journal of Smart and Nano Materials, 11, 3, 207-246.
  • CAO, Z., DALY, M., CLEMENCE, L., GEEVER, L.M., MAJOR, L., HIGGINBOTHAM, C.L., DEVINE, D., 2016. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods, Applied Surface Science, 378, 320-329.
  • CHILD, T.H.C. BERZINS, M. RYDER, G.R. TONTOWI, A., 1999. Selective laser sintering of an amorphous polymer-simulations and experiments. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 213, 333–349.
  • DUAN, P., YAN, C., ZHOU, W., REN, D., 2016. Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu2+ from wastewater, Ceram. Int., 42, 13507–13518.
  • ERIKSSON, R., MERTA, J., ROSENHOLM, J.B., 2007. The calcite/water interface, Journal of Colloid and Interface Science 313, 1, 184-93.
  • GOODMAN, H., 2005. Surface-Modified Fillers for Polymer Resins Compositions. International Publication Number WO 2005026252 A1, 24.
  • GOODRIGE, R., TUCK, C., HAGUE, R., 2012. Laser sintering of polyamides and other polymers. Prog. Mater. Sci., 57, 229–267.
  • GUO, Y., JIANG, K., BOURELL, D.L., 2014. Preparation and laser sintering of limestone PA 12 composite. Polym. Test., 37, 210–215.
  • HUNTER, R.J., 1982. The flow behavior of coagulated colloidal dispersions, Advances in Colloid and Interface Science, 17, 1, 197-211.
  • ILYIN, S., ARINIA, M.P., MALKIN, A.Ya., KULICHIIKHIN, V.G., 2016. Sol–gel transition and rheological properties of silica nanoparticle dispersions, Colloid Journal, 78, 608–615.
  • INAGAKI, Y., KUROMIYA, M., NOGUCHI, T., WATANABE, H., 1999. Reclamation of Waste Polystyrene by Sulfonation, Langmuir, 15, 12, 4171-4175.
  • IPPOLITO, F. HUBNER, G., CLAYPOLE, T., GANE P., 2020. Influence of the Surface Modification of Calcium Carbonate on Polyamide 12 Composites, Polymers 12, 6: 1295.
  • KIM, J., CREASY, T., 2004. Selective laser sintering characteristics of nylon 6/clay-reinforced nano-composite. Polym. Test., 23, 629–636.
  • KIM, J.H., AHN, J.H., HONG, J.S., 2020. Change of rheological/mechanical properties of polycapro-lactone /CaCO3 composite with particle surface modification. Korea-Australia Rheology Journal, 32, 1, 29-39.
  • KOO, J., LAO, S., HO, W., NGYUEN, K., CHENG, J., PILATO, L., WISSLER, G., ERVIN, M., 2006. Polyamide nano-composites for selective laser sintering. Proc. SFF Symp. Austin, 392–409.
  • KUMAR, S., 2014. Selective Laser Sintering/Melting, Comprehensive Materials Processing; Hashmi S., Batalha G.F., Van Tyne, C.J., Yilbas, B., Eds.; Elsevier: Oxford, UK, 93–134.
  • LAKSHTANOV, L.Z., OKHRIMENKO, D.V., KARASEVA, O.N., STIPP, S.L.S., 2018. Limits on Calcite and Chalk Recrystallization, Crystal Growth & Design, 18, 8, 4536-4543.
  • LIU-LAN, L., YU-SHENG, S., FAN-DI Z., SHU-HUAI, H., 2003. Microstructure of selective laser sintered polyamide. J. Wuhan Univ. Technol. Sci. Ed., 18, 60–63.
  • MADSEN, L., 2002. In: HUBBARD T. (Ed.), Encyclopedia of Surface and Colloid Science, Dekker, New York, 2002.
  • MONCHO-JORDA, A., MARTINEZ-LOPEZ, F., QUESASA-PEREZ, M., CABRERIZO-VILCHEZ, M.A., HIDALGO-ALVAREZ, R., 2004. Colloidal Aggregation in Two-Dimensions. In: Matijević E., Borkovec M. (eds) Surface and Colloid Science. Surface and Colloid Science, 17. Springer, Boston, MA.
  • MOULIN, P, ROQUES, H., 2003. Zeta potential measurement of calcium carbonate, J. Colloid Interface Sci., 1, 261, 1, 115-26.
  • O'BRIE, V.T., MACKAY, M.E., 2000. Stress Components and Shear Thickening of Concentrated Hard Sphere Suspensions, Langmuir, 16, 21, 7931-7938.
  • ROPP, R.C., 2013. Encyclopedia of the Alkaline Earth Compounds 1st Ed., Elsevier, Book ISBN: 9780444595539, 1216.
  • SCHMIDT, M., AMADO, A., WEGENER, K., 2014. Polymer Powders for Selective Laser Sintering (SLS); ETH-Zürich: Zürich, Switzerland.
  • SCHMIDT, M., POHLE, D., RECHTENWALD, T., 2007. Selective Laser Sintering of PEEK. CIRP Ann., 56, 205–208.
  • SELIM, K.A., HASSAN, S., ABDEL-KHALEK, M.A., YOUSSEF, M.A., ABDEL-KHALEK, N.A., 2020. Surface Modified Bentonite Mineral as a Sorbent for Pb2+ and Zn2+ Ions Removal from Aqueous Solutions, Physicochemical Problems of Mineral Processing, 56, 6, 145-157.
  • SINGH, J., RUDMAN, M., BLACKBURN, H.M., CHRYSS, A., PULLUM, L., GRAHAM, L.J.W., 2016. The importance of rheology characterization in predicting turbulent pipe flow of generalized Newtonian fluids, Journal of Non-Newtonian Fluid Mechanics, 232, 11-21.
  • TOBORI, N., AMARI, T., 2003. Rheological behavior of highly concentrated aqueous calcium carbonate suspensions in the presence of polyelectrolytes, Amari , Colloids and Surfaces, 215, 163-171.
  • VAN DE VEN, T.G.M., HUNTER, R.J., 1977. The energy dissipation in sheared coagulated sols., Rheol. Acta, 16, 534–543.
  • VOZAROVA, V., KARDJILOVA, K., HIRES, L., VALACH1, M., WOLLNER, A., 2015., Temperature Dependence of Dynamic Viscosity and DSC Analysis of the Plantohyd samples, Journal of Central European Agriculture 16, 2, 221-230.
  • ZAMAN, A., SINGH, P., MOUDGIL, B. M., 2002. Impact of Self-assembled Surfactant Structures on Rheology of Concentrated Nanoparticle Dispersions, Journal of Colloid and Interface Science, 251, 2, 381-387.
  • ZUPANCIC, R., LAPASIN, R., FUMER, M., 1997. Rheological characterization of shear thickening TiO2 suspensions in low molecular polymer solution, Progress in Organic Coatings, 30, 1–2, 67-78
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08836210-0dde-4a45-91c8-f49f39f65781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.