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Abstract

The reliability function defined by a failure ratehich is a stochastic process with nonnegative gk
continuous trajectories is presented in this papee. reliability function with an at most countalskate space
semi-Markov failure rate process is investigatedth&@orem concerning of equations for a conditiona
reliability function with a semi-Markov process agailure rate is presented in this paper. Thetgwols of the
proper renewal equations allow getting the religbflinctions for the finite space semi-Markov rand walk,

for the Poisson process and for the Furry-Yule gss@s a failure rate.

1. Introduction

We have considered a reliability function of the 2- ESsential concepts of a discrete statesand
object under assumptions that the failure rate is &ontinuoustime Semi-Markov processtheory

random (stochastic) process with nonnegative antrhe semi-Markov processes were introduced
right continuous trajectories. Equations for the jndependently and almost simultaneously by Levy P.,
conditional reliability functions of an element,d&T  smjth W.L., and Takacs L. in 1954-55. The essential
assumptions that the failure rate is a special 088  developments of the semi-Markov processes theory
semi-Markov process or a piecewise Markov processyere proposed by [1], [2], [7], [12], [14].We will

with a finite state space, was introduced by [9]. present only semi-Markov processes with a discrete
Kopocinska [10] has considered the reliability of an gtate space. Usually a semi-Markov process are

element with an alternating failure rate. For gaher constructed by the so called Markov Renewal Chain
semi-Markov process with the finite or countable {¢£..9.:n0ON,}, £.0S, 9 0[0), which is a
state space, results from the papers mentionedeabov "’ . " 0n on T Tn e

were generalized by [3]. The theorem deals with theSpeclal case of two-dimensional Markov sequence,

Markov renewal equations for the conditional such that the transition probabilities depend anty

reliability function with a general semi-Markov the discrete coordinate
failure rate process was proved by [5]. The sotutio

of an introduced finite linear system of equatifors P(ha = 1.9nu Stl¢y =19, =1,) =
the Laplace transforms allowed obtaining the
reliability function for some interesting casestioé =P(&iy = 1,9 SIS, =)

semi-Markov failure rate processes.

We should mention that there are many otherand

approaches for a concept of the failure rate. For

example: Ouhbi and Limnios [13] define a failure  p(s =i 8,=0)=P(, =i).
rate function in the semi-Markov systems and they

show its nonparametric estimation. Hassett, Diletric The matrix

and Szidarovsky [6] present the time-varying falur
rates in the availability and reliability analysis
repairable systems, Tanguy C. [15] considers
periodic failure rate.

QM) =[Q;(®):i,j08], t=0, 1)

where
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Qi (1) =P({ny = 1,9 tIE, =1) 2) times F(t) =[F; (t):i, ] 0S]. A semi-Markov process
{X():t=0} is said to be regular if the
IS Sa|d to be the renewal kernel. Let Corresponding Counting proce$g(t) t> O}as a
finite number of jumps on a finite period with
Ty = 0, Ty = '81 + ...+,'8n. (3) probability 1
The stochastic processpgt):t=  Qiven by O P(v(t) <) =1. (10)
tOR,
v(t) =n, for tO[z,,7,4), NON,. 4)

Every semi-Markov process with a finite state space

: : . is regular [9].
is called counting process. The stochastic process g (9]

{X(t):1=0}, defined by the formula 3. Semi-Markov processasthefailurerate

X(t)=¢&,, for tO[z,, 7, ), NON,. (5) We suppose that the_ failure ratt_e, denoted _by
{L(t):t =0} is a stochastic process with honnegative

is said to be the semi-Markov process given by the and right continuous trajectories.
renewal kerneQ(t ) An expectation

From the above definition it follows that the semi \

R(t) =E exg — A (u)du 11
Markov processes keep constant values on the half ®) { F{ i (u)d ﬂ (1)
intervals. From the definition of the seiiarkov
process it follows that the sequence
{X(z,):n=0,1...} is a homogeneous Markov chain

with transition probabilities

is said to be a reliability functiorcorresponding to
a random failure rate proceda.(t):t= Ofrom

Fubini's theorem and Jensen’s inequality we
immediately get the following result.

If
Py = P(X () = J1 X (7,) =) =lim Qy (1) (6)

t
The function I E[A(u)]ldu< 2)1
0

GV =Pty 1o <tIX(@) =)= Q0. () hen

jos

variableT, that is called a waiting time of the state

The waiting timeT, is the time spent in statewhen

the successor state is unknown. The function From above mentioned inequality it follows that the
reliability function with the random failure rate

F, () =P(t — 7, <t X(z,) =1, X(z,,1) = ]) (8) {L(t):t =0} is greater than or equal to the reliability
function with the deterministic failure rate equal
is a cumulative probability distribution of a ramlo the meani(t) = E[A(u)].

variabIeTij that is called a holding time of a state  \we assume that the failure rate is servlarkov

is a cumulative probability distribution of a ramdo R(t) ex;{—jE[i(u)]du]. (13)
0

if the next state ig . From (6) we have process taking values on an at most countable state
space S={4;:j0J }, where JUO{0,12 ..} or
Q; (1) = py Fy (1). ®)  J=(012..1 (seee.qg.[7] [12], [14]).

A conditional expectation
From (9) it follows that a semiMarkov process

with a discrete state space can be defined by the t
transition matrix of the embedded Markov chain R (t) = E|ex —J',I(u)du | 4(0) = 4 (14)
P=[p; :i,jOS] and a matrix of CDF of holding 0
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is said to be a conditional reliability function are one column matrices.
corresponding to a random failure rate process
{L(t):t=0} if 2(0)=4. 4. Therandom walk process asthefailure
rate
Theorem 1[3]
If the failure rate function{’(t):t> Olis a regular Let{A(t):t=0} be a semi Markov process with the
semi-Markov process on discrete state spacétate spac&S={1,,/,...,4, Bnd the kernel
S={4;:j0J3} with a kernel

QM) =[Q,(t):i,j0J], then the conditional ~ QUZIQ M1 1=0...n], (18)
reIiabiIity functions R (t ), i 0 J, satisfy the system where
of equations
~ aG(t)forj=i-1i=1...n-1
At
R(t) =e t @-G(t) 5 bG(t) for j=i+1i=1..n-1
+ @Y R (t-xdQ; (0, 07, Q; () =1G,(t) for j=1i=0
o W G,(t) forj=n-1i=n
where 0 otherwise
G (t):ZQ- (t). (16) The functionsG,(t ) G,(t), ..., G,(t) denote the
i : cumulative distribution functions with a nonnegativ

supportR, =[0,0 )and a, >0, b, >0, a, +h, =1,
The solution is unique in class of the measurabte a for k=1..n-1. This stochastic process
uniformly bounded functions.

To solve that system of integral equation we will t*(t):t=0} is called a semi Markov random walk

apply the Laplace transform. Let or the semi Markov birth and death process.
. . Suppose that the distribution§,(t , )G,(t), ...,

I%(s) = J' e R (t)dt, éi(s) = I e 'G (t)dt, G, (t) are absolutely continuous with respect to the
0 0 Lebesgue measure. Lgi=[p,, p,,.--, P, Be an

initial probability distribution of the process. Wp
the matrices from the equations (17) are

G (9= [e"Q @t
0

1d, 0 0 - 0 |
Passing in (to the Laplace transforms), we obtan t ad; 1bdi(s) 0 -+ O
system of linear equations in matrix notation has a | -q,(s)=| : : oo (19
form 0- 0 an_lan_l 1 bn_lan_l
= - 00 - 0 d, 1
(I =aA (9)R(s) = H(s), 17) - " -
where where
aa(s) =[q; (s+4):i,j 0J] gi(s)zje‘StdQ(t), i=0L..n,
0

is the square matrix and
~ - d,(8) =Gy (s+4), i=0L...n,
[R(s):i0J],

[ﬁ(s):LJr_ll—éi(swli):iDJ} :
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1 ~ where

~ st = Go(s+ o)
_ 3“((3 ~ 1 s p; = ImQ; (0). 2]
R(s) = R1: , H(s) = S+31‘(‘31(S+/%) _

The system of equation (27) takes of the form

Rn(S) 1 _é‘n(s'i-’ln)
| S+ 4y i Ty =Ty
THh+,T, = T4
The Laplace transform of the unconditional + -
reliability function is it s ST (29)
R(S) = PoRy(S) +...+ PR, (9). (20) b, 4T = T,
TH,+T +...+1, = 1
From (13) it follows that
It is easy to obtain a solution
t
R(t) = R(t) =ex —jzandu, (21) byby.-b s
o T, = T[O for j =1,...,n, (30)
Aoy 4;
where
where
A(u) = E[MD] = Y AR (), (22) by,=1 a,=1 (31)
k=0
P.(t)=P{A()=4}, t=0. (23) From a condition) 1, =1 we get
j=0
Let
. -1
n ] bk
sztlim R.(t), kOJ. (24) Tro=(1+zniJ . (32)
o j=0 k=

As a conclusion from theorems presented by

Koryoluk and Turbin [11], we obtain a formula From (25) we obtain a limiting distribution of the

semi-Markov random walk with a kernel matrix (18)

P, :£k”‘k k=0,...n, (25) - mjo — | -
T, m n b,
%i:;‘m ay } ‘
where |
- hmj
m, = [[1- G (®]dt, k=0,...n, (26) P = 3
0

, j=1...n
+ By :
" Z{ la, }m’
IS an expectation of a waiting time in statg and
the stationary probabilitiest,, k=0,...,n, of the  Finally for larget we obtain an approximate lower
embedded Markov chaifii(t,):n=01 ,..satisfy Pound for the reliability function
the linear system of equations

_ R(t) = exp - | A (u)du =exp{— W Pt}. (34)
D.mpy =y, jO0S, Y m =l (27) F{ .([ ] kzzc; -

i0s i0s
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4.1. Alternating process as a failurerate _{ 0 1_(1+ﬂt)e—ﬂt}
1_ ,

An alternating process is a special case of a semi- 0
Markov random walk fom= 1That kind of random
process as a failure rate was discussed by >0, £>0, t=0.

Kopocinska [10]. Now, the failure rate is semi-

Markov process{i(t):t= O}taking values in the The CDF of waiting times in the statég i, are
states spac&={/1,,4, Jdefined by a kernel matrix
Gy(t) =1- 1+ pt)e™,

(35)

Q) { 0 G(’“)}

G(t) O G,(t)=1-e™*, t=0.

and an initial distributionp =[p,, p, ].Now, the  The corresponding Laplace transforms are
matrices from equation (17) take of the forms

- _ ﬂz _ 2
~ G.(S) =

|—aA(s)={ ‘90(5”0)} O e 5O ey

—0i(s+4) 1

ﬁZ 2
where Go(9)= G+97 697, a+s’
§.(9) :Te—stdq @®), i=01 We calculate the conditional reliability functioorf
the parameters
1 _ =0, 4=02 a=001 =01 p,=0, p =1
5 = Gy(s+4)
R(s) = {BO(S)}, H(s) = S+ o _ . Substituting those functions into (37) we get
Ri(s) ~Gy(s+ )
s+ ' =
g R(9)=
. . 1 001 001 |1 001
A solution of those system of equation is s+ 02 (s+02)(s+ 02]) +(S+ 021) S"S(S+ 0.1)2
~ 0.0001
Ro(Sl) = . ~(s+01)%(s+ 02))
—Gy(s+4)+0o (5"'/10){_'__61(5"'/11)} (36)
0 _ _ Sth , Using MATHEMATICA computer system we obtain
1-0o(s+20) Gy (s+4) the reliability function as an inverse of the Lagga
transform

R(s)=

R (t) =1257% - 0.49591 %1370
+0.245912 70972 > 0.

1—é'l(s+m+ﬁl(sw)Ljio—éo(swo)} (37)

_St4
1-0o(s+2) 0y (S+4)
The functionR/(t ) t=0 is equal to unconditional
An unconditional reliability function is reliability function R(t), t=0. A corresponding
- - - probability density function is
R(S) = PoRy(8) + PiRi(S). (38)
f (t) =025e7% - 0.06794& 137014

Example 1 +0.0179478 700784 | >,

We assume that an initial distribution and a kenfel

the process are : :
5. Poisson process astherandom failurerate

P=[Po. P, For the Poisson process a following result is
obtained.
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Theorem 2[3]
If the random failure rat¢i(t):t= Ojs the Poisson

process with parametef > Ghen the reliability
function defined as

R(t) = E[ex;{— jl(u)du“ ,

is

R(t) = exp[-A(t -1+ exp[-t])]. (39)
Let us recall the well known property:{ik(t):t= 0}
is the Poisson process with the paraméter thén

E[A(t)] = 4t, t=0. (40)
From inequality (13) we get

_ 25
R(t) = R(t) = exp{—ét } (41)

The reliability function (39) and the function (41)
with 1 = 0.2 are shown irFigure 1
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[

Figure 1 Reliability functions for the Poisson failure
rate process.

The density function of the time to failure witheth
Poisson failure rate is

f(t) =16V e, (42)

This density function with parametet = 0

shown inFigure 2

214
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Figure2 Density function for the Poisson failure rate
process

The hazard rate function corresponding to the
reliability function with the Poisson failure ravee
can write as

h(t) = AL-€™). 143

Let us notice thatimh(t) =1 It means that for large
t o0

t the reliability function (39) is approximately exju
to the exponential reliability function.

6. Furry-Yule process astherandom failure
rate

Assume that the random failure rdte(t):t=> B3}

the Furry-Yule process. The Furry-Yule process with
parameteri > Qis the semi-Markov process on the
counting state spac8= {0,1,2, ...Hefined by the

initial distribution p(0) = [1,0,0,...]and the kernel

[0 G,(t) 0 0 0
0 0 Gt) 0 0
Qit)=|0 O 0 G,(t) 0 -, (44)
0O O 0 0 G;(t)
where

G(t)=1-e™* t>0,i=01,...

Theorem 3[5]
If the random failure rat¢A(t):t= O}s the Furry-

Yule process with parameterli > , Othen the
reliability function defined as

R(t) = E[ex;{— jl(u)du“ ,
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is
_ (A+pe™
Well known equalities for the differentiable

reliability function come to conclusion:
a density functiorf(t ),t=0, and a hazard rate

function h(t),t 20, corresponding to the reliability
function (45) are

B i(i +1)e—it (1_ e—(i‘*l)t)

f (t) (1+ /le—().+l)t)2 ! (46)
B /1[1_ e—(},+1)t]
flt.
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Figure 3 Density function for thé&urry- Yule failure
rate process.
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Figure 4 Hazard rate function for thEurry-Yule
failure rate process.

Figure 3shows the density function (46) far= 0.2

and Figure 4 shows the corresponding hazard ratg3]

function Let us notice thath(0)= Oand

!im h(t)=1. An expectation of the FuryYule

failure rate process is a function
A(t) = E[Mt)] =" -1. Hence the lower bound of
the reliability function (45) is

- Eeﬂ +£+[

Rit)=e * * . J48

RUitL

08 -
0.6 -
04

0z

0.0\\\\\\\\\\ I I ! t
C 2 4 6 8 1z 14

1

Figure 5 Reliability function and its lower bound for
theFurry-Yule failure rate process

7. Conclusion

The randomly changeable environmental conditions
cause random load of an object and it implies the
random failure rate of that one. For the reliapilit
function defined by a random failure rate we
obtained an interesting property: the reliability
function with the random failure rate is greatearth

or equal to the reliability function with the
deterministic failure rate equal to the mean of the
corresponding random failure rate. A main discussed
problem is the reliability function defined by the
semi-Markov failure rate process. For the semi-
Markov failure rate we have derived equations that
allow us to obtain the conditional reliability
functions. Applying the Laplace transformation for
the introduced system of the renewal equationatfor
at most countable states space, we have obtaieed th
reliability function for the special cases of thes-
Markov random walk, for the Poisson and Furry-
Yule processes as the failure rates. Moreover, we
have derived the lower bounds for the considered
reliability functions. It seems to be possible xte@d
presented results on the continuous time non-
homogeneous semi-Markov process.
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