PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of porosity and gas saturation for deep‑buried sandstone reservoirs from seismic data using an improved rock‑physics model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, many important discoveries have been made in global deep oil and gas exploration, which indicates that deep exploration has gradually become one of the most important areas in current and future hydrocarbon exploration. However, the prediction of deep reservoirs is very challenging due to their low porosity and complex pore structure characteristics caused by the burial depth and diagenesis. Rock physics provides a link between the geologic reservoir parameters and seismic elastic properties and has evolved to become a key tool of quantitative seismic interpretation. Based on the mineral component and pore structure analysis of studied rocks, we propose an improved rock-physics model by introducing a third feldspar-related pore for deep-buried sandstone reservoirs to the traditional Xu–White model. This modelling process consists of three steps: first, rock matrix modelling using time-average equations; second, dry rock modelling using a multipore analytical approximation; and third, fluid-saturated rock modelling using a patchy distribution. It has been used in total porosity estimation, S-wave velocity prediction and rock-physics template establishment. The applicability of the improved rock-physics model is verified by a theoretical quartz-water model test and a real data total porosity estimation compared with the traditional Xu–White model and the density method. Then, a rock-physics template is generated by the improved rock-physics model for porosity and gas saturation prediction using seismic data. This template is carefully calibrated and validated by well-log data at both the well-log scale and seismic scale. Finally, the feasibility of the established rock-physics template for porosity and gas saturation prediction is validated by a deep-buried sandstone reservoir application in the East China Sea.
Czasopismo
Rocznik
Strony
557--575
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
  • State Key Laboratory of Petroleum Resource and Prospecting, Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing 102249, China
  • State Key Laboratory of Petroleum Resource and Prospecting, Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing 102249, China
  • Department of Earth Science, University of Bergen, 5020 Bergen, Norway
autor
  • Research Institute of Petroleum Exploration and Development, PetroChina Company Limited, Beijing 100083, China
autor
  • College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
autor
  • Gudao Oil Production Plant of Shengli Oilfield, China Petrochemical Corporation, Dongying 257231, Shandong, China
Bibliografia
  • 1. Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, California
  • 2. Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge University Press, New York
  • 3. Avseth P, Mukerji T, Mavko G, Dvorkin J (2010) Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—a review of selected models and suggested work flows. Geophysics 75(5):A31–A47
  • 4. Avseth P, Johansen TA, Bakhorji A, Mustafa HM (2014) Rock-physics modelling guided by depositional and burial history in low-to-intermediate-porosity sandstones. Geophysics 79(2):D115–D121
  • 5. Bachrach R, Avseth P (2008) Rock physics modeling of unconsolidated sands: accounting for nonuniform contacts and heterogeneous stress fields in the effective media approximation with applications to hydrocarbon exploration. Geophysics 73(6):E197–E209
  • 6. Bai J, Yue C, Liang Y, Song Z, Ling S (2013) Variable aspect ratio method in the Xu–White model for shear-wave velocity estimation. J Geophys Eng 10:1–6
  • 7. Batzle M, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57:1396–1408
  • 8. Berge PA, Berryman JG, Bonner BP (1993) Influence of microstructure on rock elastic properties. Geophys Res Lett 20:2619–2622
  • 9. Berryman JG (1992) Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. J Acoust Soc Am 91:551–571
  • 10. Berryman JG, Pride SR, Wang HF (2002) A differential scheme for elastic properties of rocks with dry or saturated cracks. Geophys J Int 151:597–611
  • 11. Best A (2014) Physics of rocks for hydrocarbon exploration: introduction. Geophys Prospect 62:1203–1204
  • 12. Bosch M, Carvajal C, Rodrigues J, Torres A, Aldana M, Sierra JS (2009) Petrophysical seismic inversion conditioned to well-log data: methods and application to a gas reservoir. Geophysics 74(2):O1–O15
  • 13. Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68:185–198
  • 14. Buland A, Kolbjørnsen O, Hauge R, Skjæveland Ø, Duffaut K (2008) Bayesian lithology and fluid prediction from seismic prestack data. Geophysics 73(3):C13–C21
  • 15. Cao Q, Zhou W, Liu Y, Chen W, Ji A, Lu J, Wang Y (2017) Characteristics and origin of deep high-porosity zones in slope of Xihu Sag. J Cent South Uni (Sci Technol) 48:751–760
  • 16. Cheng C, Toksöz MN (1979) Inversion of seismic velocities for the pore aspect-ratio spectrum of a rock. J Geophys Res 84:7533–7543
  • 17. Chi X, Han D (2009) Lithology and fluid differentiation using rock physics template. Lead Edge 28:60–65
  • 18. Dutton SP, Loucks RD (2010) Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200–6700 m) burial, Gulf of Mexico Basin, U.S.A. Mar Pet Geol 27:69–81
  • 19. Dvorkin J, Nur A (1996) Elasticity of high-porosity sandstones: theory for two North Sea data sets. Geophysics 61:1363–1370
  • 20. Dyman TS, Wyman RE, Kuuskraa VA, Lewan MD, Cook TA (2003) Deep natural gas resources. Nat Resour Res 12:41–56
  • 21. Guéguen Y, Palciauskas V (1994) Introduction to the physics of rocks. Princeton University Press, Chichester
  • 22. Hu M, Shen J, Hu D (2013) Reservoir characteristics and its main controlling factors of the Pinghu Formation in Pinghu structural belt, Xihu depression. Oil Gas Geol 34:185–191
  • 23. Jakobsen M, Hudson J, Johansen TA (2003a) T-matrix approach to shale acoustics. Geophys J Int 154:533–558
  • 24. Jakobsen M, Johansen TA, McCann C (2003b) The acoustic signature of fluid flow in complex porous media. J Appl Geophys 54:219–246
  • 25. Johansen TA, Drottning Lecomte I, Ystdal HG (2002) An approach to combined rock physics and seismic modelling of fluid substitution effects. Geophys Prospect 50:119–137
  • 26. Keys RG, Xu S (2002) An approximation for the Xu–White velocity model. Geophysics 67:1406–1414
  • 27. Keys R, Matava T, Foster D, Ashabranner D (2017) Isotropic and anisotropic velocity model building for subsalt seismic imaging. Geophysics 82(3):S247–S258
  • 28. Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media. Geophysics 39:587–618
  • 29. Lai J, Wang G, Fan Z, Chen J, Wang S, Zhou Z, Fan X (2016) Insight into the pore structure of tight sandstones using NMR and HPMI measurements. Energy Fuels 30:10200–10214
  • 30. Lai J, Wang G, Chai Y, Xin Y, Wu Q, Zhang X, Sun Y (2017) Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa depression, Tarim basin of China. AAPG Bull 101(6):829–862
  • 31. Lai J, Wang G, Wang S, Cao J, Li M, Pang X, Zhou Z, Fan X, Dai Q, Yang L, He Z, Qin Z (2018) Review of diagenetic facies in tight sandstones: diagenesis, diagenetic minerals, and prediction via well logs. Earth Sci Rev 185:234–258
  • 32. Li H, Zhang J (2012) Analytical approximations of bulk and shear moduli for dry rock based on the differential effective medium theory. Geophys Prospect 60:281–292
  • 33. Lindsay R, Van Koughnet R (2001) Sequential Backus averaging: upscaling well logs to seismic wavelengths. Lead Edge 20:188–191
  • 34. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook tools for seismic analysis of porous media, 2nd edn. Cambridge University Press, New York
  • 35. Morad S, Al-Ramadan K, Ketzer JM, DeRos LF (2010) The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bull 94(8):1267–1309
  • 36. Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics 75(5):A147–A164
  • 37. Norris AN (1985) A differential scheme for the effective moduli of composites. Mech Mater 4:1–16
  • 38. Ødegaard E, Avseth P (2004) Well log and seismic data analysis using rock physics templates. First Break 23:37–43
  • 39. Pang X, Jia C, Wang W (2015) Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Pet Sci 12:1–53
  • 40. Rezaee R, Saeedi A, Clennell B (2012) Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J Petrol Sci Eng 88–89:92–99
  • 41. Ruiz F, Dvorkin J (2009) Sediment with porous grains: rock-physics model and application to marine carbonate and opal. Geophysics 74(1):E1–E15
  • 42. Sun L, Zou C, Zhu R, Zhang Y, Zhang S, Zhang B, Zhu G, Gao Z (2013) Formation, distribution and potential of deep hydrocarbon resources in China. Pet Explor Dev 40:687–695
  • 43. Vernik L, Kachanov M (2010) Modelling elastic properties of siliciclastic rocks. Geophysics 75(6):E171–E182
  • 44. Wang S, Yuan S, Wang T, Gao J, Li S (2018) Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection. Geophysics 83(6):O105–O113
  • 45. White JE (1975) Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40:224–232
  • 46. Wu J, Zhang L, Wan L, Zhao Q, Yang C, Wang Y (2017) Provenance analysis of Pinghu Formation in Xihu sag. China Pet Explor 22:50–57
  • 47. Wyllie MRJ, Gregory AR, Gardner LW (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70
  • 48. Xu S, Payne MA (2009) Modelling elastic properties in carbonate rocks. Lead Edge 28:66–74
  • 49. Xu S, White RE (1995) A new velocity model for clays and mixtures. Geophys Prospect 43:91–118
  • 50. Xu S, White RE (1996) A physical model for shear-wave velocity prediction. Geophys Prospect 44:687–717
  • 51. Yuan S, Ji Y, Shi P, Zeng J, Gao J, Wang S (2019a) Sparse Bayesian learning-based seismic high-resolution time-frequency analysis. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/lgrs.2018.2883496
  • 52. Yuan S, Liu Y, Zhang Z, Luo C, Wang S (2019b) Prestack stochastic frequency-dependent velocity inversion with rock-physics constraints and statistical associated hydrocarbon attributes. IEEE Geosci Remote Sens Lett 16:140–144
  • 53. Zhao L, Nasser M, Han D (2013) Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophys Prospect 61:827–841
  • 54. Zimmerman RW (1985) The effect of microcracks on the elastic moduli of brittle materials. J Mater Sci Lett 4:1457–1460
  • 55. Zou C, Zhu R, Liu K, Su L, Bai B, Zhang X, Yuan X, Wang J (2012) Tight gas sandstone reservoirs in China: characteristics and recognition criteria. J Pet Sci Eng 88–89:82–91
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-087a521d-5325-46cf-b1b6-8c94fc645ef6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.