Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nanoscale zero-valent iron-doped carbonized zeolitic imidazolate framework-8 (nZVI/CZIF-8) was prepared by carbonation of ferric nitrate and ZIF-8 at 800 °C and used as an adsorbent to remove methylene blue (MB) from water. The synthesized nZVI/CZIF-8 has a specific surface area of 806.9 m2/g, a pore volume of 0.86 cm3/g and an nZVI content of 1.35%, respectively. Both the nZVI/CZIF-8 and CZIF-8 have identical functional groups of O-H, C-H and C=C. With the increase of CZIF-8 size, MB removal rate increased. The doping of nZVI increased the MB removal percentage from 74.5% for ZIF-8 to 96.2% within 80 min for nZVI/CZIF-8. The MB removal percentage increased with the dosage of nZVI/CZIF-8. The MB adsorption with the adsorbents conforms to the Freundlich adsorption isothermal model and the removal rate fitted well to a pseudo-first-order model. The results demonstrate the feasibility of synthesizing high active and stable nZVI/CZIF-8 particles.
Czasopismo
Rocznik
Tom
Strony
12--19
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wz.
Twórcy
autor
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
- Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Huainan, 232001, China
autor
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
autor
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
autor
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai 201209, China
autor
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
autor
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
autor
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai 201209, China
Bibliografia
- 1. Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., 177, 70–80. DOI: 10.1016/j.jhazmat.2009.12.047.20044207.
- 2 Fadillah, G., Saleh, T.A., Wahyuningsih, S., Ninda Karlina Putri, E. & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J., 378, 122140. DOI: 10.1016/j.cej.2019.122140.
- 3. Zhang, P., O’Connor, D., Wang, Y., Jiang, L., Xia, T., Wang, L., Tsang, D.C.W., Ok, Y.S. & Hou, D. (2020). A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater., 384, 121286. DOI: 10.1016/j.jhazmat.2019.121286.31586920.
- 4. Salama, R.S., El-Sayed, E.-S.M., El-Bahy, S.M. & Awad, F.S. (2021). Silver nanoparticles supported on UIO-66 (Zr): As an efficient and recyclable heterogeneous catalyst and efficient adsorbent for removal of indigo carmine. Colloid. Surface. A, 626, 127089. DOI: 10.1016/j.colsurfa.2021.127089.
- 5. Alshorifi, F.T., Ali, S.L. & Salama, R.S. (2022). Promotional synergistic effect of Cs–Au NPs on the performance of Cs–Au/MgFe2O4 catalysts in catalysis 3,4-dihydropyrimidin-2(1h)-ones and degradation of RhB dye. J. Inorg. Organomet. P., 32, 3765–3776. DOI: 10.1007/s10904-022-02389-8.
- 6. Alshorifi, F.T., Alswat, A.A. & Salama, R.S. (2022). Gold-selenide quantum dots supported onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B. Heliyon, 8, 6. DOI: 10.1016/j.heliyon.2022.e09652.918988935706958.
- 7. Ghosh, D. & Bhattacharyya, K.G. (2002). Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 20, 295–300. DOI: 10.1016/S0169-1317(01)00081-3.
- 8. El-Hakam, S.A., Alshorifi, F.T., Salama, R.S., Gamal, S., El-Yazeed, W.S.A., Ibrahim, A.A. & Ahmed, A.I. (2022). Application of nanostructured mesoporous silica/bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. J. Mater. Res. Technol., 18, 1963–1976. DOI: 10.1016/j.jmrt.2022.03.067.
- 9. Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A.R., Chen, H., Hu, X. & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour. Technol., 337, 125432. DOI: 10.1016/j. biortech.2021.125432.
- 10. Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D.O. & Prasetyoko, D. (2020). Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mate. Today Chem., 16, 100233. DOI: 10.1016/j.mtchem.2019.100233.
- 11. Güleç, F., Williams, O., Kostas, E.T., Samson, A., Stevens, L.A. & Lester, E. (2022). A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel, 330, 125428. DOI: 10.1016/j.fuel.2022.125428.
- 12. Reyes-Miranda, J., Garcia-Murillo, A., Garrido-Hernández, A.& Carrillo-Romo, F.d.J. (2021). Fast and mild alkaline solvothermal synthesis of nanostructured flower-like Na2Ti3O7 and its methylene blue adsorption capacity. Mater. Lett., 292, 129589. DOI: 10.1016/j.matlet.2021.129589.
- 13. Zhang, Z., Xu, L., Liu, Y., Feng, R., Zou, T., Zhang, Y., Kang, Y.& Zhou, P. (2021). Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Micropor. Mesopor. Mat., 315, 110904. DOI: 10.1016/j.micromeso.2021.110904.
- 14. Dai, K., Zhao, G., Kou, J., Wang, Z., Zhang, J., Wu, J., Yang, P., Li, M., Tang, C., Zhuang, W.& Ying, H. (2021). Magnetic mesoporous sodium citrate modified lignin for improved adsorption of calcium ions and methylene blue from aqueous solution. J. Environ. Chem. Eng., 9, 105180. DOI: 10.1016/j.jece.2021.105180.
- 15. Ajeel, S. J., Beddai, A. A. & Almohaisen, A. M. N. (2021). Preparation of alginate/graphene oxide composite for methylene blue removal. Mater. Today: Proc., DOI: 10.1016/j. matpr.2021.05.331.
- 16. Sharma, P., Olufemi, A. F. & Qanungo, K. (2021). Development of green geo-adsorbent pellets from low fire clay for possible use in methylene blue removal in aquaculture. Mater. Today: Proc., DOI: 10.1016/j.matpr.2021.07.343.
- 17. Chandarana, H., Senthil Kumar, P., Seenuvasan, M. & Anil Kumar, M. (2021). Kinetics, equilibrium and thermodynamic investigations of methylene blue dye removal using casuarina equisetifolia pines. Chemosphere, 285, 131480. DOI: 10.1016/j.chemosphere.2021.131480.
- 18. Ibrahim, A. A., Salama, R. S., El-Hakam, S. A., Khder, A. S. & Ahmed, A.I. (2021). Synthesis of sulfated zirconium supported MCM-41 composite with high-rate adsorption of methylene blue and excellent heterogeneous catalyst. Colloid. Surface. A, 616, 126361. DOI: 10.1016/j.colsurfa.2021.126361.
- 19. Pasinszki, T., Krebsz, M., Chand, D., Kótai, L., Homonnay, Z., Sajó, I.E. & Váczi, T. (2020). Carbon microspheres decorated with iron sulfide nanoparticles for mercury(II) removal from water. J. Mater. Sci., 55, 1425–1435. DOI: 10.1007/s10853-019-04032-3.
- 20. Wang, G., Gao, G., Yang, S., Wang, Z., Jin, P. & Wei, J. (2021). Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal. Micropor. Mesopor. Mat., 310, 110623. DOI: 10.1016/j.micromeso.2020.110623.
- 21. Krebsz, M., Pasinszki, T., Tung, T. T., Nine, M. J. & Losic, D. (2021). Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water separation. Chemosphere, 263, 127790. DOI: 10.1016/j.chemosphere.2020.127790.32854003
- 22. Pasinszki, T., Krebsz, M., Kótai, L., Sajó, I.E., Homonnay, Z., Kuzmann, E., Kiss, L.F., Váczi, T. & Kovács, I. (2015). Nanofurry magnetic carbon microspheres for separation processes and catalysis: Synthesis, phase composition, and properties. J. Mater. Sci., 50, 7353–7363. DOI: 10.1007/s10853-015-9292-6.
- 23. Chen, S., Belver, C., Li, H., Ren, L.Y., Liu, Y.D., Bedia, J., Gao, G.L. & Guan, J. (2018). Effects of pH value and calcium hardness on the removal of 1,1,1-trichloroethane by immobilized nanoscale zero-valent iron on silica based supports. Chemosphere, 211, 102–111. DOI: 10.1016/j.chemosphere.2018.07.127.
- 24. Sawafta, R. & Shahwan, T. (2019). A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. J. Mol. Liq., 273, 274–281. DOI: 10.1016/j.molliq.2018.10.010.
- 25. Yang, B., Tian, Z., Zhang, L., Guo, Y.& Yan, S. (2015). Enhanced heterogeneous fenton degradation of methylene blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide. J. Water Proc. Eng., 5, 101–111. DOI: 10.1016/j.jwpe.2015.01.006.
- 26. Zhang, J., Zhang, T., Liang, X., Wang, Y., Shi, Y., Guan, W., Liu, D., Ma, X., Pang, J., Xie, X., Hong, K. & Wu, Z. (2020). Efficient photocatalysis of Cr(VI) and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride. Appl. Clay Sci., 198, 105817. DOI: 10.1016/j.clay.2020.105817.
- 27. Zhang, N., Eric, M., Zhang, C., Zhang, J., Feng, K., Li, Y. & Wang, S. (2021). ZVI impregnation altered arsenic sorption by ordered mesoporous carbon in presence of Cr(VI): A mechanistic investigation. J. Hazard. Mater., 414, 125507. DOI: 10.1016/j.jhazmat.2021.125507.34030402.
- 28. Xu, J., Wang, X., Pan, F., Qin, Y., Xia, J., Li, J. & Wu, F. (2018). Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants. Chem. Eng. J., 353, 542–549. DOI: 10.1016/j. cej.2018.07.030.
- 29. Chen, S., Li, Z., Belver, C., Gao, G., Guan, J., Guo, Y., Li, H., Ma, J., Bedia, J. & Wójtowicz, P. (2020). Comparison of the behavior of ZVI/carbon composites from both commercial origin and from spent Li-ion batteries and mill scale for the removal of ibuprofen in water. J. Environ. Manage., 264, 110480. DOI: 10.1016/j.jenvman.2020.110480.32250905
- 30. Shi, J., Wang, J., Wang, W., Teng, W. & Zhang, W.-x. (2019). Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC). J. Environ. Sci., 81, 28–33. DOI: 10.1016/j.jes.2019.02.010.30975326
- 31. Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A. B., Filip, J., Zbořil, R., Deligiannakis, Y. & Karakassides, M. A. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 93, 636–647. DOI: 10.1016/j. carbon.2015.05.081.
- 32. Gadipelli, S. & Guo, Z.X. (2015). Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield – A case for superior CO2 capture. Chem. Sus. Chem., 8, 2123–2132. DOI: 10.1002/cssc.201403402.451509725917928.
- 33. Aijaz, A., Fujiwara, N. & Xu, Q. (2014). From metal– organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc., 136, 6790–6793. DOI: 10.1021/ja5003907.24786634.
- 34. Sann, E. E., Pan, Y., Gao, Z., Zhan, S. & Xia, F. (2018). Highly hydrophobic ZIF-8 particles and application for oil-water separation. Sep. Purif. Technol., 206, 186–191. DOI: 10.1016/j. seppur.2018.04.027.
- 35. Pérez-Miana, M., Reséndiz-Ordóñez, J. U. & Coronas, J. (2021). Solventless synthesis of ZIF-l and ZIF-8 with hydraulic press and high temperature. Micropor. Mesopor. Mater., 328, 111487. DOI: 10.1016/j.micromeso.2021.111487.
- 36. Qu, Y., Qin, L. & Liu, X. (2023). Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater. Carbohyd. Polym., 300, 120268. DOI: 10.1016/j.carbpol.2022.120268.36372491.
- 37. Jiang, X.-F., Wang, X.-B., Dai, P., Li, X., Weng, Q., Wang, X., Tang, D.-M., Tang, J., Bando, Y. & Golberg, D. (2015). High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy, 16, 81–90. DOI: 10.1016/j. nanoen.2015.06.008.
- 38. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P. & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc., 195, 145–154. DOI: 10.1016/j.elspec.2014.07.003.
- 39. Chen, S., Bedia, J., Li, H., Ren, L.Y., Naluswata, F. & Belver, C. (2018). Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons. Chem. Eng. J., 343, 619–628. DOI: 10.1016/j. cej.2018.03.011.
- 40. Zhang, X., Lin, D. & Chen, W. (2015). Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption. RSC Adv., 5, 45136–45143. DOI: 10.1039/c5ra08014b.
- 41. Chen, X., Lu, K., Lin, D., Li, Y., Yin, S., Zhang, Z., Tang, M. & Chen, G. (2021). Hierarchical porous tubular biochar based sensor for detection of trace lead (II). Electroanalysis, 33, 473–482. DOI: 10.1002/elan.202060148.
- 42. Lu, K.C., Wang, J .K., Lin, D.H., Chen, X., Yin, S.Y. & Chen, G.S. (2020). Construction of a novel electrochemical biosensor based on a mesoporous silica/oriented graphene oxide planar electrode for detecting hydrogen peroxide. Anal. Methods, 12, 2661–2667. DOI: 10.1039/d0ay00430h.32930296.
- 43. Yin, S., Wang, J., Li, Y., Wu, T., Song, L., Zhu, Y., Chen, Y., Cheng, K., Zhang, J., Ma, X., Lin,D. & Chen, G. (2021). Macroscopically oriented magnetic core-regularized nanomaterials for glucose biosensors assisted by self-sacrificial label. Electroanalysis, 33, 2216–2225. DOI: 10.1002/elan.202100231.
- 44. Lin, D., Zhang, X., Cui, X. & Chen, W. (2014). Highly porous carbons with superior performance for CO2 capture through hydrogen-bonding interactions. RSC Adv., 4, 27414–27421. DOI: 10.1039/c4ra04545a.
- 45. Luan, Tran, B., Chin, H.-Y., Chang, B.K. & Chiang, A.S.T. (2019). Dye adsorption in ZIF-8: The importance of external surface area. Micropor. Mesopor. Mater., 277, 149–153. DOI: 10.1016/j.micromeso.2018.10.027.
- 46. Yao, J., He, M., Wang, K., Chen, R., Zhong, Z. & Wang, H. (2013). High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. Cryst. Eng. Comm., 15, 3601–3606. DOI: 10.1039/C3CE27093A.
- 47. Guan, X., Sun, Y., Qin, H., Li, J., Lo, I.M.C., He, D. & Dong, H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res., 75, 224–248. DOI: 10.1016/j.watres.2015.02.034.25770444.
- 48. Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G. & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J., 307, 264–272. DOI: 10.1016/j.cej.2016.08.089.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-087667c6-0782-47ea-9df9-b239b0e40f34