PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic response analysis of a thin-walled rectangular plate subjected to thermoacoustic loadings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For thin-walled structures invariably exposed to thermal and noise environment, their dynamic response is an extreme concern in the design of the component of advanced hypersonic aircraft. To address the problem, three theoretical models are established with three typical graded thermal distributions considered. By introducing the thermal moment, membrane forces and acoustic loadings into the vibration equation of plate, the governing equation is derived and it is solved combined with boundary conditions of the plate, the modal function and velocity compatibility equations at the fluid-structure coupling surface. The accuracy of the theoretical predictions is checked against finite element results with good agreement achieved. The results show that not the physical parameters with variation of temperature but the thermal moments and membrane forces, cause the buckling phenomenon. It is noted that buckling phenomenon occurs not only in uniform temperature field but also in graded temperature distribution filed. The mechanism analysis about modal snap-through and losing phenomenon indicates that thermoacoustic loadings will affect the stiffness matrix and mass matrix of structure. With the increase of temperature, the lower modes of the plate are lost, the higher modes appear in advance, and the losing phenomenon occurs in accordance with the order.
Rocznik
Strony
151--174
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wz.
Twórcy
autor
  • School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
autor
  • School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
Bibliografia
  • [1] Li X., Yu K., Zhao R.: Vibro-acoustic response of a clamped rectangular sandwich panel in thermal environment. Appl. Acoust. 132(2018), 82–96, DOI: 10.1016/j.apacoust.2017.11.010
  • [2] Li X., Yu K.: Vibration and acoustic responses of composite and sandwich panels under thermal environment. Compos. Struct. 131(2015), 1, 1040–1049, DOI: 10.1016/j.compstruct.2015.06.037
  • [3] Li X., Yu K., Zhao R., Han J., Song H.: Sound transmission loss of composite and sandwich panels in thermal environment. Compos. Part B-Eng. 133(2018), 1–14, DOI: 10.1016/j.compositesb.2017.09.023
  • [4] Kajurek J, Rusowicz A, Grzebielec A: The influence of stack position and acoustic frequency on the performance of thermoacoustic refrigerator with the standing wave. Arch. Thermodyn. 38(2017), 4, 89–107, DOI: 10.1515/aoter-2017-0026
  • [5] Ibrahim H.H., Tawfik M., Negm H.M.: Thermoacoustic ramdom response of shape memory alloy hybrid composite plates. J. Aircraft 45(2008), 3, 962–970, DOI:10.2514/1.32843
  • [6] Ibrahim H.H., Yoo H.H., Lee Y.S.: Supersonic flutter of functionally graded panels subjected to acoustic and thermal loads. J. Aircraft 46(2009), 2, 593–600, DOI: 10.2514/1.39085
  • [7] Yu W., Wang X., Huang X.: Dynamic modeling of heat transfer in thermal-acoustic fatigue tests. Aerosp. Sci. Technol. 71(2017), 675–684, DOI:10.1016/j.ast.2017.10.025
  • [8] Bai W., Sha Y., Li H., Tang X.: Dynamic response analysis and fatigue life prediction of C/Sic thin laminated plate under thermal-acoustic loadings. J. Vib. Shock 36(2017), 10, 76–83, DOI: 10.13465/j.cnki.jvs.2017.10.013
  • [9] Blevins R.D., Holehouse I., Wentz K.R.: Thermoacoustic loads and fatigue of hypersonic vehicle skin panels. J. Aircraft 30(1993), 6, 971–978, DOI:10.2514/3.46441
  • [10] Marcus J.J., Otto F.M.: Oil canning of metallic panels in thermal-acoustic environments. In: Proc. 6th Aircraft Design, Flight Test and Operations Meeting, (1974).
  • [11] Sha Y.D., Wei J., Gao Z.J., Zhong H.J.: Nonlinear response with snap-through and fatigue life prediction for panels to thermoacoustic loadings. J. Vib. Control 20(2014), 5, 679–697, DOI: 10.1177/1077546312463751
  • [12] Spain C.V., Soistmann D.L., Linville T.W.: Integration of thermal effects into finite element aero-thermo-elastic analysis with illustrative results. NASP CR, 1059, 1989.
  • [13] Amit S., Robert W.G., Joseph J.H.: Numerical investigation of the snap-through response of a curved, clamped-clamped plate with thermal and random loading. In: Proc. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2008.
  • [14] Cheng H., Li H., Zhang W., Liu B., Wu Z., Kong F.: Effects of radiation heating on modal characteristics of panel structures. J. Spacecraft Rockets 52(2015), 4, 1228–1235, DOI: 10.2514/1.A33214
  • [15] Marcus J.J.: Sonic fatigue of advanced composite panels in thermal environments. J. Aircraft 20(1983), 3, 282–288, DOI: 10.2514/3.44865
  • [16] NG C.F., Clevenson S.A.: High intensity acoustic tests of a thermally stressed aluminum plate in TAFA. NASA Tech Memo 101552. NASA Langley R.C. Hampton 1989.
  • [17] NG C.F., Clevenson S.A.: High-intensity acoustic tests of a thermally stressed plate. J. Aircraft 28(1991), 4, 275–281, DOI: 10.2514/3.46023
  • [18] NG C.F., Wentz K.: The prediction and measurement of thermoacoustic response of plate structures. Proc. 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 1990.
  • [19] Lee J.: Large-amplitude plate vibration in an elevated thermal environment. Appl. Mech. Rev. 46(1993), 2, 242–254, DOI: 10.1115/1.3122643
  • [20] Lee J.: Random vibration of thermally buckled plates: II Nonzero temperature gradient across the plate thickness. Appl. Mech. Rev. 50(1997), 2, 105–116, DOI:10.1115/1.3101821
  • [21] Lee J.: Displacement and strain statistics of thermally buckled plates. J. Aircraft 38(2001), 1, 104–110, DOI: 10.2514/2.2740.
  • [22] Lee J., Wentz K., Clay C., Anselmo E., Crumbacher R., Vaicaitis R.: Prediction of statistical dynamics of thermally buckled composite panels. In: Proc. 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 1998.
  • [23] Locke J.: Finite element large deflection random response of thermally buckled plates. J. Sound Vib. 160(1993), 301–312, DOI: 10.1006/jsvi.1993.1025
  • [24] Goley G., Zappia B., Beberniss T., Shukla A.: Effect of loading on the snap-through response of a post-buckled beam. In: Proc. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., 2008.
  • [25] Bran D.T., Elefterie C.F., Ghiban B.: Aeronautical industry requirements for titanium alloys. IOP Conf. Ser.: Mater. Sci. Eng. 209(2017), 1, 012059, DOI:10.1088/1757-899X/209/1/012059
  • [26] Howard C.Q., Cazzolato B.S.: Acoustic analyses using Matlab and Ansys. CRC Press, 2014.
  • [27] Li J.Y.: Thermal acoustic fatigue analysis of flight vehicle thin-walled structures. MSc thesis, Shenyang Aerospace University, Shenyang 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08765e9c-2d77-431b-99f3-764bd7e2782b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.