PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the demand for innovative, sustainable, and efficient food packaging solutions has surged in response to growing concerns about environmental impact, food safety, and quality preservation. A sericin-based polymer composite film with multifunctional properties shows promise as an alternative for enhancing food packaging. In this study, sericin-based composite films were prepared by incorporating Aloe vera gel, chitosan, and glycerol into a sericin solution (1.5 % w/v) through facile homogenisation at 70 °C, followed by casting and subsequent drying on a glass platform. The resulting dried film exhibited uniformity, a smooth texture, and successful integration of the composite components. The film demonstrated a moisture content of 21.02 % and a porosity of 3.56 %, with a thickness of (62.1 ± 2.3) μm. It exhibited moderate transparency with reasonable water vapour permeability. Notably, the DPPH scavenging results indicated that the film has a potent antioxidant capacity with an efficacy rate of 99.1 %, supported further by a phenolic content of 11.5 mg GAE per gram of film. Controlled solute migration of components from the composite films was observed, particularly under acidic conditions. Importantly, toxicity evaluation on A549 cells revealed no adverse effects, even at higher concentrations. Due to its consistent film-forming ability, antioxidant potency, controlled migration, and safe nature, the developed sericin polymer-based film could be an effective alternative for food packaging sensitive foods, maintaining oxidative stability, reducing moisture loss, improving quality, and extending shelf life.
Rocznik
Strony
297--314
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • Centre for Biomaterials & Environmental Biotechnology, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India
  • Centre for Biomaterials & Environmental Biotechnology, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India
  • PG and Research Department of Biotechnology and Microbiology, National College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, 620001, India; Geobiotechnology Laboratory, National College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, 620001, India
  • Centre for Interfaces & Nanomaterials, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
  • James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
  • Amrita School for Sustainable Futures (ASF), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, Kollam, Kerala, India
Bibliografia
  • [1] Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and bio-based food packaging: a review on past and current design innovations. Foods. 2023;12:1057. DOI: 10.3390/foods12051057.
  • [2] Sid S, Mor RS, Kishore A, Sharanagat VS. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci Technol. 2021;115:87-104. DOI: 10.1016/j.tifs.2021.06.026.
  • [3] Tarangini K, Kavi P, Jagajjanani Rao K. Application of sericin-based edible coating material for postharvest shelf-life extension and preservation of tomatoes. eFood. 2022;3:e36. DOI: 10.1002/efd2.36.
  • [4] Mollah MZI, Miah MS, Akram MW, Mahmud SH, Faruque MRI, Al-mugren KS. Thermoplastic-polymer matrix composite of banana/betel nut husk fiber reinforcement: Physico-mechanical properties evaluation. E-Polymers. 2024;24. DOI: 10.1515/epoly-2023-0158.
  • [5] Silva T, Silva A, Vieira M, Gimenes M, Silva M. Production and physicochemical characterization of microspheres made from sericin and alginate blend. Chem Eng Trans. 2014;39:643-8. DOI: 10.3303/CET1439108.
  • [6] Cheerarot O, Baimark Y. Biodegradable silk fibroin/chitosan blend microparticles prepared by emulsification-diffusion method. E-Polymers. 2015;15:67-74. DOI: 10.1515/epoly-2014-0134.
  • [7] He H, Cai R, Wang Y, Tao G, Guo P, Zuo H, et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. Int J Biol Macromolecules. 2017;104:457-64. DOI: 10.1016/j.ijbiomac.2017.06.009.
  • [8] Yang C, Yao L, Zhang L. Silk sericin-based biomaterials shine in food and pharmaceutical industries. Smart Materials Medicine. 2023;4:447-59. DOI: 10.1016/j.smaim.2023.01.003.
  • [9] Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA. Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids. 2012;29:280-9. DOI: 10.1016/j.foodhyd.2012.03.004.
  • [10] Ali J, Pandey S, Singh V, Joshi P. Effect of coating of Aloe vera gel on shelf life of grapes. Current Res Nutrition Food Sci J. 2016;4:58-68. DOI: 10.12944/CRNFSJ.4.1.08.
  • [11] Ghosh T, Katiyar V. Nanochitosan functionalized hydrophobic starch/guar gum biocomposite for edible coating application with improved optical, thermal, mechanical, and surface property. Int J Biol Macromol. 2022;211:116-27. DOI: 10.1016/j.ijbiomac.2022.05.079.
  • [12] Khatri D, Panigrahi J, Prajapati A, Bariya H. Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Scientia Horticulturae. 2020;259:108837. DOI: 10.1016/j.scienta.2019.108837.
  • [13] Rahman S, Konwar A, Majumdar G, Chowdhury D. Guar gum-chitosan composite film as excellent material for packaging application. Carbohydrate Polymer Technologies and Applications. 2021;2:100158. DOI: 10.1016/j.carpta.2021.100158.
  • [14] Jampílek J, Kráľová K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S. 2015;22:321-61. DOI: 10.1515/eces-2015-0018.
  • [15] Bandara S, Du H, Carson L, Bradford D, Kommalapati R. agricultural and biomedical applications of chitosan-based nanomaterials. Nanomaterials (Basel). 2020;10:1903. DOI: 10.3390/nano10101903.
  • [16] Nicolau-Lapeña I, Colàs-Medà P, Alegre I, Aguiló-Aguayo I, Muranyi P, Viñas I. Aloe vera gel: An update on its use as a functional edible coating to preserve fruits and vegetables. Progress Organic Coatings. 2021;151:106007. DOI: 10.1016/j.porgcoat.2020.106007.
  • [17] Kapusta-Duch J, Leszczyńska T, Borczak B, Florkiewicz A, Ambroszczyk A. Impact of different packaging systems on selected antioxidant properties of frozen-stored broccoli. Ecol Chem Eng S. 2019;26:383-96. DOI: 10.1515/eces-2019-0027.
  • [18] Escamilla-García M, Calderón-Domínguez G, Chanona-Pérez JJ, Farrera-Rebollo RR, Andraca-Adame JA, Arzate-Vázquez I, et al. Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int J Biolog Macromol. 2013;61:196-203. DOI: 10.1016/j.ijbiomac.2013.06.051.
  • [19] Ghosh S, Rao R, Nambiar K, Haragannavar V, Augustine D, Sv S. Sericin, a dietary additive: Mini review. J Medicine, Radiology, Pathology Surgery. 2017;4:13-7. DOI: 10.15713/ins.jmrps.89.
  • [20] Qamar J, Ejaz S, Anjum MA, Nawaz A, Hussain S, Ali S, et al. Effect of Aloe vera gel, chitosan and sodium alginate based edible coatings on postharvest quality of refrigerated strawberry fruits of cv. Chandler. J Hortic Sci Technol. 2018:8-16. DOI: 10.46653/jhst180101008.
  • [21] Basiak E, Lenart A, Debeaufort F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers. 2018;10:412. DOI: 10.3390/polym10040412.
  • [22] Vetrivel S, Saraswathi MSA, Rana D, Nagendran A. Fabrication of cellulose acetate nanocomposite membranes using 2D layered nanomaterials for macromolecular separation. Int J Biolog Macromol. 2018;107:1607-12. DOI: 10.1016/j.ijbiomac.2017.10.027.
  • [23] Wang W, Xue C, Mao X. Chitosan: Structural modification, biological activity and application. Int J Biolog Macromol. 2020;164:4532-46. DOI: 10.1016/j.ijbiomac.2020.09.042.
  • [24] Kalaycıoğlu Z, Kahya N, Adımcılar V, Kaygusuz H, Torlak E, Akın-Evingür G, et al. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur Polymer J. 2020;133:109777. DOI: 10.1016/j.eurpolymj.2020.109777.
  • [25] Gennadios A, Weller CL, Gooding CH. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J Food Eng. 1994;2:395-409. DOI: 10.1016/0260-8774(94)90062-0.
  • [26] Mikus M, Galus S, Ciurzyńska A, Janowicz M. Development and characterization of novel composite films based on soy protein isolate and oilseed flours. Molecules. 2021;26:3738. DOI: 10.3390/molecules26123738.
  • [27] Maria TMC, de Carvalho RA, Sobral PJA, Habitante AMBQ, Solorza-Feria J. The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. J Food Eng. 2008;87:191-9. DOI: 10.1016/j.jfoodeng.2007.11.026.
  • [28] Siripatrawan U, Harte BR. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids. 2010;24:770-5. DOI: 10.1016/j.foodhyd.2010.04.003.
  • [29] Ruiz-Navajas Y, Viuda-Martos M, Sendra E, Perez-Alvarez JA, Fernández-López J. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control. 2013;30:386-92. DOI: 10.1016/j.foodcont.2012.07.052.
  • [30] Ni S, Zhang H, Dai H, Xiao H. Starch-based flexible coating for food packaging paper with exceptional hydrophobicity and antimicrobial activity. Polymers. 2018;10:1260. DOI: 10.3390/polym10111260.
  • [31] Grenha A, Grainger CI, Dailey LA, Seijo B, Martin GP, Remuñán-López C, et al. Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur J Pharm Sci. 2007;31:73-84. DOI: 10.1016/j.ejps.2007.02.008.
  • [32] Anju TR, Parvathy S, Valiya Veettil M, Rosemary J, Ansalna TH, Shahzabanu MM, et al. Green synthesis of silver nanoparticles from Aloe vera leaf extract and its antimicrobial activity. Materials Today: Proc. 2021;43:3956-60. DOI: 10.1016/j.matpr.2021.02.665.
  • [33] Castrillón Martínez DC, Zuluaga CL, Restrepo-Osorio A, Álvarez-López C. Characterization of sericin obtained from cocoons and silk yarns. Procedia Eng. 2017;200:377-83. DOI: 10.1016/j.proeng.2017.07.053.
  • [34] Bujňáková Z, Dutková E, Zorkovská A, Baláž M, Kováč J, Kello M, et al. Mechanochemical synthesis and in vitro studies of chitosan-coated InAs/ZnS mixed nanocrystals. J Mater Sci. 2017;52:721-35. DOI: 10.1007/s10853-016-0366-x.
  • [35] Fernandes Queiroz M, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO. Does the use of chitosan contribute to oxalate kidney stone formation? Marine Drugs. 2015;13:141-58. DOI: 10.3390/md13010141.
  • [36] de Oliveira LIG, de Oliveira KÁR, de Medeiros ES, Batista AUD, Madruga MS, dos Santos Lima M, et al. Characterization and efficacy of a composite coating containing chitosan and lemongrass essential oil on postharvest quality of guava. Innovative Food Sci Emerging Technologies. 2020;66:102506. DOI: 10.1016/j.ifset.2020.102506.
  • [37] W. Apriliyani M, Purwadi P, Manab A, W. Apriliyanti M, D. Ikhwan A. Characteristics of moisture content, swelling, opacity and transparency with addition chitosan as edible films/coating base on casein. AJFST. 2020;18:9-14. DOI: 10.19026/ajfst.18.6041.
  • [38] Boyandin AN, Dvoinina LM, Sukovatyi AG, Sukhanova AA. Production of porous films based on biodegradable polyesters by the casting solution technique using a co-soluble porogen (Camphor). Polymers. 2020;12:1950. DOI: 10.3390/polym12091950.
  • [39] Malhotra B, Keshwani A, Kharkwal H. Natural polymer based cling films for food packaging. Int J Pharm Sci. 2015;7.
  • [40] Shankar S, Rhim JW. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids. 2018;82:116-23. DOI: 10.1016/j.foodhyd.2018.03.054.
  • [41] Seo SJ, Das G, Shin HS, Patra JK. Silk Sericin protein materials: characteristics and applications in food-sector industries. Int J Molecular Sci. 2023;24. DOI: 10.3390/ijms24054951.
  • [42] Prakoso FAH, Indiarto R, Utama GL. Edible film casting techniques and materials and their utilization for meat-based product packaging. Polymers. 2023;15:2800. DOI: 10.3390/polym15132800.
  • [43] Maruddin F, Malaka R, Baba S, Amqam H, Taufik M, Sabil S. Brightness, elongation and thickness of edible film with caseinate sodium using a type of plasticizer. IOP Conf Ser: Earth Environ Sci. 2020;492:012043. DOI: 10.1088/1755-1315/492/1/012043.
  • [44] Wu S, Li G, Li B, Duan H. Chitosan-based antioxidant films incorporated with root extract of Aralia continentalis Kitagawa for active food packaging applications. E-Polymers. 2022;22:125-35. DOI: 10.1515/epoly-2022-0017.
  • [45] Takechi T, Wada R, Fukuda T, Harada K, Takamura H. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods. Biomed Rep. 2014;2:364-9. DOI: 10.3892/br.2014.244.
  • [46] Bajić M, Novak U, Likozar B. Development of bio-based chitosan films with incorporated chestnut extract. 5th World Congress on Mechanical, Chem Material Eng. 2019. DOI: 10.11159/iccpe19.107.
  • [47] Dordevic S, Dordevic D, Sedlacek P, Kalina M, Tesikova K, Antonic B, et al. Incorporation of natural blueberry, red grapes and parsley extract by-products into the production of chitosan edible films. Polymers. 2021;13:3388. DOI: 10.3390/polym13193388.
  • [48] Taghizadeh M, Mohammadifar MA, Sadeghi E, Rouhi M, Mohammadi R, Askari F, et al. Photosensitizer-induced cross-linking: A novel approach for improvement of physicochemical and structural properties of gelatin edible films. Food Research Int. 2018;112:90-7. DOI: 10.1016/j.foodres.2018.06.010.
  • [49] US FDA. GRAS Notice No. GRN 000997. US FDA Center for Food Safety Applied Nutrition. 2021. Available from: https://www.fda.gov/media/158880/download [accessed September 4, 2024].
  • [50] Abourehab MAS, Pramanik S, Abdelgawad MA, Abualsoud BM, Kadi A, Ansari MJ, et al. Recent advances of chitosan formulations in biomedical applications. Int J Molecular Sci. 2022;23:10975. DOI: 10.3390/ijms231810975.
  • [51] Tarangini K, Huthaash K, Nandha Kumar V, Kumar ST, Jayakumar OD, Wacławek S, et al. Eco-friendly bioplastic material development via sustainable seaweed biocomposite. Ecol Chem Eng S. 2023;30:333-41. DOI: 10.2478/eces-2023-0036.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08706bce-4cdd-4256-96b5-e2780befa63b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.