PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Empirical Study on the Effect of Tungsten Carbide Grain Size on Wear Resistance, Cutting Temperature, Cutting Forces and Surface Finish in the Milling Process of 316L Stainless Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cutting tools made of the WC-Co sintered carbides are now very popular and are widely used in machining of materials. However, there are numerous problems in this area which require more research and need to be studied further. This paper presents the results of an experimental study aimed at discovering the impact of the microstructure, particularly of the tool substrate grain size, on the quality of the machined surface, cutting forces and temperature in the cutting zone, as well as the tool life. In addition, the impact of the feed was considered. The machining process involved side milling of a cuboidal block made of the AISI 316L steel which, due to its specific properties, is widely used in many industries. The tools used in the tests had different WC phase grain size: 0.18, 0.28 and 0.31 μm, respectively, and moreover the middle specimen had also a non-homogeneous structure and an increased content of the Co matrix. The tests proved a significant impact of the tool microstructure on the tool life and the roughness parameters Ra and Rz of the machined surface. The impact of the studied factors on the forces and the temperature in the cutting zone was not as strong, because it did not exceed 20%. The value and the novel character of the paper results from the fact that it concerns a specific case: side milling of the 316L steel with the use of the WC-Co sintered carbide tools, and consequently provides a contribution to solve a practical industrial issue.
Twórcy
  • Cracow University of Technology, Mechanical Faculty
  • Cracow University of Technology, Mechanical Faculty
Bibliografia
  • 1. Kaladhar M., Venkata Subbaiah K., Srinivasa Rao C.H. Machining of austenitic stainless steels – A review. International Journal of Machining and Machinability of Materials (2012) 12: 178–192.
  • 2. Fernández-Abia A.I., García J.B., López De Lacalle L.N. High-performance machining of austenitic stainless steels. In: Davim J. Paulo (ed) Machining and machine-tools. Woodhead Publishing, (2013) 29–90.
  • 3. Kumar A., Sharma R., Kumar S., Verma P. A review on machining performance of AISI 304 steel. Mater Today Proc (2022). https://doi.org/10.1016/j.matpr.2021.11.003
  • 4. Song R.B., Xiang J.Y., Hou D.P. Characteristics of mechanical properties and microstructure for 316L austenitic stainless steel. Journal of Iron and Steel Research International (2011). https://doi.org/10.1016/S1006-706X(11)60117-9
  • 5. Philip A.M., Chakraborty K. Some studies on the machining behaviour of 316L austenitic stainless steel. Mater Today Proc (2022). https://doi.org/10.1016/j.matpr.2022.01.132
  • 6. Uysal A., Caudill J.R., Schoop J., Jawahir I.S. Minimising carbon emissions and machining costs with improved human health in sustainable machining of austenitic stainless steel through multi-objective optimisation. International Journal of Sustainable Manufacturing (2020). https://doi.org/10.1504/IJSM.2020.107154
  • 7. Su Y., Zhao G., Zhao Y., Meng J., Li C. Multi-objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel. Metals (Basel) (2020). https://doi.org/10.3390/met10020217
  • 8. Du F., He L., Huang H., Zhou T., Wu J. Analysis and multi-objective optimization for reducing energy consumption and improving surface quality during dry machining of 304 stainless steel. Materials (2020) 13: 1–26.
  • 9. Maurel-Pantel A., Fontaine M., Michel G., Thibaud S., Gelin J.C. Experimental investigations from conventional to high speed milling on a 304-L stainless steel. International Journal of Advanced Manufacturing Technology (2013) 69: 2191–2213.
  • 10. Liu G., Zou B., Huang C., Wang X., Wang J., Liu Z. Tool damage and its effect on the machined surface roughness in high-speed face milling the 17-4PH stainless steel. International Journal of Advanced Manufacturing Technology (2016) 83: 257–264.
  • 11. Ciftci I. Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribol Int (2006) 39: 565–569.
  • 12. Liu G.J., Zhou Z.C., Qian X., Pang W.H., Li G.H., Tan G.Y. Wear Mechanism of Cemented Carbide Tool in High Speed Milling of Stainless Steel. Chinese Journal of Mechanical Engineering (English Edition) (2018). https://doi.org/10.1186/s10033-018-0298-2
  • 13. Alabdullah M., Polishetty A., Littlefair G. Impacts of Wear and Geometry Response of the Cutting Tool on Machinability of Super Austenitic Stainless Steel. International Journal of Manufacturing Engineering, 2016: 1–9.
  • 14. Jianxin D., Jiantou Z., Hui Z., Pei Y. Wear mechanisms of cemented carbide tools in dry cutting of precipitation hardening semi-austenitic stainless steels. Wear (2011) 270: 520–527.
  • 15. Martinho R.P., Silva F.J.G., Martins C., Lopes H. Comparative study of PVD and CVD cutting tools performance in milling of duplex stainless steel. International Journal of Advanced Manufacturing Technology (2019) 102: 2423–2439.
  • 16. Nur R., Noordin M.Y., Izman S., Kurniawan D. Machining parameters effect in dry turning of AISI 316L stainless steel using coated carbide tools. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (2017). https://doi.org/10.1177/0954408915624861
  • 17. Sultan A.Z., Sharif S., Kurniawan D. Effect of Machining Parameters on Tool Wear and Hole Quality of AISI 316L Stainless Steel in Conventional Drilling. Procedia Manuf (2015) 2: 202–207.
  • 18. Bembenek M., Dzienniak D., Dzindziora A., Sułowski M., Ropyak L. Investigation of the Impact of Selected Face Milling Parameters on the Roughness of the Machined Surface for 1.4301 Steel. Advances in Science and Technology Research Journal (2023). https://doi.org/10.12913/22998624/170422
  • 19. Leppert T. (2012) Surface layer properties of AISI 316L steel when turning under dry and with minimum quantity lubrication conditions. Proc Inst Mech Eng B J Eng Manuf. https://doi.org/10.1177/0954405411429894
  • 20. Szczotkarz N., Mrugalski R., Maruda R.W., Królczyk G.M., Legutko S., Leksycki K., Dębowski D., Pruncu C.I. Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication (2021). Tribol Int. https://doi.org/10.1016/j.triboint.2020.106813
  • 21. Natesh C.P., Shashidhara Y.M., Amarendra H.J., Shetty R., Harisha S.R., Shenoy P.V., Nayak M., Hegde A., Shetty D., Umesh U. Tribological and Morphological Study of AISI 316L Stainless Steel during Turning under Different Lubrication Conditions. Lubricants (2023). https://doi.org/10.3390/lubricants11020052
  • 22. Inspektor A., Salvador P.A. Architecture of PVD coatings for metalcutting applications: A review. Surf Coat Technol (2014) 257: 138–153.
  • 23. Endrino J.L., Fox-Rabinovich G.S., Gey C. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel. Surf Coat Technol (2006) 200: 6840–6845.
  • 24. Kulkarni A.P., Joshi G.G., Sargade V.G. Performance of PVD AlTiCrN coating during machining of austenitic stainless steel. Surface Engineering (2013) 29: 402–407.
  • 25. Bouzakis K.D., Tsouknidas A., Skordaris G., Bouzakis E., Makrimallakis S., Gerardis S., Katirtzoglou G. Optimization of wet or dry micro-blasting on PVD films by various Al2O3 grain sizes for improving the coated tools’ cutting performance. Tribology in Industry (2011) 33: 49–56.
  • 26. Tillmann W., Stangier D., Hagen L., Schröder P., Krabiell M. Influence of the WC grain size on the properties of PVD/HVOF duplex coatings. Surf Coat Technol (2017) 328: 326–334.
  • 27. Petersson A., Ågren J. Constitutive behaviour of WC-Co materials with different grain size sintered under load. Acta Mater (2004) 52: 1847–1858.
  • 28. Wang H., Gee M., Qiu Q., Zhang H., Liu X., Nie H., Song X., Nie Z. Grain size effect on wear resistance of WC-Co cemented carbides under different tribological conditions. J Mater Sci Technol (2019). https://doi.org/10.1016/j.jmst.2019.07.016
  • 29. Saito H, Iwabuchi A, Shimizu T. Effects of Co content and WC grain size on wear of WC cemented carbide. Wear (2006) 261: 126–132.
  • 30. Bouzakis K.D., Michailidis N., Skordaris G., Tsouknidas A., Makrimallakis S., Bouzakis E. Grain size effect of pre- and post-coating treated cemented carbides on PVD films’ adhesion and mechanical properties. Materwiss Werksttech (2013) 44: 697–703.
  • 31. Tang J., Xiong J., Guo Z., Yang T., Liang M., Yang W., Liu J., Zheng Q. Microstructure and properties of CVD coated on gradient cemented carbide with different WC grain size. Int J Refract Metals Hard Mater (2016). https://doi.org/10.1016/j.ijrmhm.2016.09.003
  • 32. Jian X.G., Chen M., Sun F.H., Ma Y.P., Zhang Z.M. Study on the effects of substrate grain size on diamond thin films deposited on tungsten carbide substrates. Key Eng Mater. (2004). https://doi.org/10.4028/www.scientific.net/kem.274-276.1137
  • 33. Polini R., Bravi F., Casadei F., D’Antonio P., Traversa E. Effect of substrate grain size and surface treatments on the cutting properties of diamond coated Co-cemented tungsten carbide tools. Diam Relat Mater. (2002) https://doi.org/10.1016/S0925-9635(02)00020-1
  • 34. Parihar R.S., Gangi Setti S., Sahu R.K. Effect of sintering parameters on microstructure and mechanical properties of self-lubricating functionally graded cemented tungsten carbide. J Manuf Process (2019) 45: 498–508.
  • 35. Ślusarczyk Ł., Franczyk E. Estimation of temperature in the cutting area during orthogonal turning of grade 2 titanium. International Journal of Advanced Manufacturing Technology (2023). https://doi.org/10.1007/s00170-023-10877-5
  • 36. Zhang Z., Liu Z., Ren X., Zhao J. Prediction of Tool Wear Rate and Tool Wear during Dry Orthogonal Cutting of Inconel 718. Metals (Basel) (2023) 13: 1225
  • 37. Zawada-Michalowska M., Pieśko P., Józwik J. Tribological aspects of cutting tool wear during the turning of stainless steels. Materials (2020). https://doi.org/10.3390/ma13010123
  • 38. Wang H., Webb T., Bitler J.W. Study of thermal expansion and thermal conductivity of cemented WC-Co composite. Int J Refract Metals Hard Mater (2015). https://doi.org/10.1016/j.ijrmhm.2014.06.009
  • 39. Vornberger A., Pötschke J., Gestrich T., Herrmann M., Michaelis A. Influence of microstructure on hardness and thermal conductivity of hardmetals. Int J Refract Metals Hard Mater (2020). https://doi.org/10.1016/j.ijrmhm.2019.105170
  • 40. Chuangwen X., Jianming D., Yuzhen C., Huaiyuan L., Zhicheng S., Jing X. The relationships between cutting parameters, tool wear, cutting force and vibration. Advances in Mechanical Engineering (2018). https://doi.org/10.1177/1687814017750434
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-086a737c-e5ae-4911-a63d-c22e67a5df9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.