PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-sequence texture analysis in classification of in vivo MR images of the prostate

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study is to investigate the potential of multi-sequence texture analysis in the characterization of prostatic tissues from in vivo Magnetic Resonance Images (MRI). The approach consists in simultaneous analysis of several images, each acquired under different conditions, but representing the same part of the organ. First, the texture of each image is characterized independently of the others. Then the feature values corresponding to different acquisition conditions are combined in one vector, characterizing a combination of textures derived from several sequences. Three MRI sequences are considered: T1-weighted, T2-weighted, and diffusion-weighted. Their textures are characterized using six methods (statistical and model-based). In total, 30 tissue descriptors are calculated for each sequence. The feature space is reduced using a modified Monte Carlo feature selection, combined with wrapper methods, and Principal Components Analysis. Six classifiers were used in the work. Multi-sequence texture analysis led to better classification results than single-sequence analysis. The subsets of features selected with the Monte Carlo method guaranteed the highest classification accuracies.
Twórcy
autor
  • Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
autor
  • Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
autor
  • Department of Urology, Pontchaillou University Hospital, Rennes, France
  • LTSI, INSERM U1099, University of Rennes 1, France
  • LTSI, INSERM U1099, University of Rennes 1, France
Bibliografia
  • [1] Duda D, Kretowski M, Mathieu R, de Crevoisier R, Bezy- Wendling J. Multi-image texture analysis in classification of prostatic tissues from MRI. Preliminary results. Adv Intell Syst Comput 2014;283:139–50.
  • [2] Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics. CA Cancer J Clin 2015;65 (2):87–108.
  • [3] Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer; 2016, http://globocan.iarc.fr [accessed 25.01.16].
  • [4] American Cancer Society. Cancer facts & figures 2015. Atlanta: American Cancer Society; 2015.
  • [5] Wolf AMD, Wender RC, Etzioni RB, Thompson IM, D'Amico AV, Volk RJ, et al. American Cancer Society Guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin 2010;60(2):70–98.
  • [6] Andriole GL, Crawford ED, Grubb III RL, Buys SS, Chia D, Church TR, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 2009;360:1310–9.
  • [7] Greene KL, Albertsen PC, Babaian RJ, Carter HB, Gann PH, Han M, et al. Prostate specific antigen best practice statement: 2009 update. J Urol 2009;182(5):2232–41.
  • [8] Harvey CJ, Pilcher J, Richenberg J, Patel U, Frauscher F. Applications of transrectal ultrasound in prostate cancer. Br J Radiol 2012;85(1). S3-17 [special issue].
  • [9] Lundstrom KJ, Drevin L, Carlsson S, Garmo H, Loeb S, Stattin P, et al. Nationwide population based study of infections after transrectal ultrasound guided prostate biopsy. J Urol 2014;192(4):1116–22.
  • [10] Petrick N, Sahiner B, Armato 3rd SG, Bert A, Correale L, Delsanto S, et al. Evaluation of computer-aided detection and diagnosis systems. Med Phys 2013;40(8). 087001-1-17.
  • [11] Duda D. Texture analysis as a tool for medical decision support. Part 1: Recent applications for cancer early detection. Adv Comput Sci Res 2014;11:61–84.
  • [12] Duda D. Texture analysis as a tool for medical decision support. Part 2: Classification of liver disorders based on computed tomography images. Adv Comput Sci Res 2014;11:85–108.
  • [13] Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski J. Monte Carlo feature selection for supervised classification. Bioinformatics 2008;24(1):110–7.
  • [14] Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997;97(1/2):273–324.
  • [15] Sung YS, Kwon HJ, Park BW, Cho G, Lee CK, Cho KS, et al. Prostate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter maps. AJR Am J Roentgenol 2011;197(5):1122–9.
  • [16] Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 2009;30 (2):327–34.
  • [17] Vos PC, Hambrock T, Barenstz JO, Huisman HJ. Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI. Phys Med Biol 2010;55(6):1719–34.
  • [18] Vapnik VN, editor. The nature of statistical learning theory. 2nd ed. New York: Springer; 2000.
  • [19] Artan Y, Haider MA, Langer DL, van der Kwast TH, Evans AJ, Yang Y, et al. Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process 2010;19(9):2444–55.
  • [20] Lopes R, Ayache A, Makni N, Puech P, Villers A, Mordon S, et al. Prostate cancer characterization on MR images using fractal features. Med Phys 2011;38(1):83–95.
  • [21] Ginsburg SB, Rusu M, Kurhanewicz J, Madabhushi A. Computer extracted texture features on T2W MRI to predict biochemical recurrence following radiation therapy for prostate cancer. Proc SPIE 2014. Paper 903509.
  • [22] Freund Y, Shapire R. A decision-theoretic generalization of online learning and an application to boosting. J Comput Syst Sci 1997;55(1):119–39.
  • [23] Turner MR. Texture discrimination by Gabor functions. Biol Cybern 1986;55(2/3):71–82.
  • [24] Viswanath S, Bloch BN, Rosen M, Chappelow J, Toth R, Rofsky N, et al. Integrating structural and functional imaging for computer assisted detection of prostate cancer on multi-protocol in vivo 3 tesla MRI. Proc SPIE 2009. Paper 72603I.
  • [25] Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
  • [26] Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Trans Med Imaging 2014;33(5):1083–92.
  • [27] Molina JFG, Zheng L, Sertdemir M, Dinter DJ, Schonberg S, Radle M. Incremental learning with SVM for multimodal classification of prostatic adenocarcinoma. PLoS ONE 2014;9 (4). Paper e93600.
  • [28] Chan I, Wells 3rd W, Mulkern RV, Haker S, Zhang J, Zou KH, et al. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys 2003;30(9):2390–8.
  • [29] Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986;21(9):720–33.
  • [30] Niaf E, Rouviere O, Mege-Lechevallier F, Bratan F, Lartizien C. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol 2012;57(12):3833–51.
  • [31] Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol 2004;59(12):1061–9.
  • [32] Nailon WH. Texture analysis methods for medical image characterisation. In: Mao Y, editor. Biomedical imaging. InTech Open; 2010. p. 75–100.
  • [33] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009.
  • [34] Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157–82.
  • [35] Lerski RA, de Certaines JD, Duda D, Klonowski W, Yang G, Coatrieux JL, et al. Application of texture analysis to muscle MRI: 2 – technical recommendations. EPJ Nonlinear Biomed Phys 2015;3(2):1–20.
  • [36] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. SIGKDD Explor 2009;11(1):10–8.
  • [37] Quinlan J. C4.5: programs for machine learning. San Francisco: Morgan Kaufmann; 1993.
  • [38] Bishop CM. Neural networks for pattern recognition. New York: Oxford University Press; 1995.
  • [39] Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges CJC, Smola AJ, editors. Advances in kernel methods – support vector learning. Cambridge: MIT Press; 1998. p. 185–208.
Uwagi
EN
This is an extended and revised version of a paper presented at the ITiB'2014 Conference
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-086986d8-3c07-4390-9160-ad790e02525a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.