PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of Parkinson's disease in brain MRI images using Deep Residual Convolutional Neural Network (DRCNN)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our aging culture, neurodegenerative disorders like Parkinson's disease (PD) are among the most serious health issues. It is a neurological condition that has social and economic effects on individuals. It happens because the brain's dopamine-producing cells are unable to produce enough of the chemical to support the body's motor functions. The main symptoms of this illness are eyesight, excretion activity, speech, and mobility issues, followed by depression, anxiety, sleep issues, and panic attacks. The main aim of this research is to develop a workable clinical decision-making framework that aids the physician in diagnosing patients with PD influence. In this research, the authors propose a technique to classify Parkinson’s disease by MRI brain images. Initially, the input data is normalized using the min-max normalization method, and then noise is removed from the input images using a median filter. The Binary Dragonfly algorithm is then used to select features. In addition, the Dense-UNet technique is used to segment the diseased part from brain MRI images. The disease is then classified as Parkinson's disease or health control using the Deep Residual Convolutional Neural Network (DRCNN) technique along with the Enhanced Whale Optimization Algorithm (EWOA) to achieve better classification accuracy. In this work, the Parkinson's Progression Marker Initiative (PPMI) public dataset for Parkinson's MRI images is used. Indicators of accuracy, sensitivity, specificity and precision are used with manually collected data to evaluate the effectiveness of the proposed methodology.
Rocznik
Strony
125--146
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
  • Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh
  • Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh
  • Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh
  • Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh
  • Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh
  • Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh
  • ITM SLS Baroda University, Vadodara
Bibliografia
  • [1] Abayomi-Alli, O. O., Damaševičius, R., Maskeliūnas, R., & Abayomi-Alli, A. (2020). BiLSTM with data augmentation using interpolation methods to improve early detection of parkinson disease. 2020 15th Conference on Computer Science and Information Systems (FedCSIS) (pp. 371-380). IEEE. http://doi.org/10.15439/2020F188
  • [2] Balaji, E., Brindha, D., & Balakrishnan, R. (2020). Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Applied Soft Computing, 94, 106494. https://doi.org/10.1016/j.asoc.2020.106494
  • [3] Caliskan, A., Badem, H., Basturk, A., & Yüksel, M. (2017). Diagnosis of the parkinson disease by using deep neural network classifier. IU-Journal of Electrical & Electronics Engineering, 17(2), 3311-3318.
  • [4] Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, R. (2021). A novel enhanced whale optimization algorithm for global optimization. Computers & Industrial Engineering, 153, 107086. https://doi.org/10.1016/j.cie.2020.107086
  • [5] Chen, Y., Zhu, G., Liu, D., Liu, Y., Yuan, T., Zhang, X., & Zhang, J. (2020). The morphology of thalamic subnuclei in Parkinson's disease and the effects of machine learning on disease diagnosis and clinical evaluation. Journal of the neurological sciences, 411, 116721. https://doi.org/10.1016/j.jns.2020.116721
  • [6] Feng, Z., Cai, A., Wang, Y., Li, L., Tong, L., & Yan, B. (2021). Dual residual convolutional neural network (DRCNN) for low-dose CT imaging. Journal of X-Ray Science and Technology, 29(1), 91-109. https://doi.org/10.3233/XST-200777
  • [7] Fu, T., Klietz, M., Nösel, P., Wegner, F., Schrader, C., Höglinger, G. U., & Ding, X. Q. (2020). Brain morphological alterations are detected in early‐stage Parkinson's disease with MRI morphometry. Journal of Neuroimaging, 30(6), 786-792. https://doi.org/10.1111/jon.12769
  • [8] Griffanti, L., Klein, J. C., Szewczyk-Krolikowski, K., Menke, R. A., Rolinski, M., Barber, T. R., & Mackay, C. (2020). Cohort profile: the Oxford Parkinson’s Disease Centre Discovery Cohort MRI substudy (OPDC-MRI). BMJ open, 10(8), e034110. https://doi.org/10.1136/bmjopen-2019-034110
  • [9] Hossein‐Tehrani, M. R., Ghaedian, T., Hooshmandi, E., Kalhor, L., Foroughi, A. A., & Ostovan, V. R. (2020). Brain TRODAT‐SPECT Versus MRI Morphometry in Distinguishing Early Mild Parkinson's disease from Other Extrapyramidal Syndromes. Journal of Neuroimaging, 30(5), 683-689. https://doi.org/10.1111/jon.12740
  • [10] Kaplan, E., Altunisik, E., Firat, Y. E., Barua, P. D., Dogan, S., Baygin, M., & Acharya, U. R. (2022). Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images. Computer Methods and Programs in Biomedicine, 224, 107030. https://doi.org/10.1016/j.cmpb.2022.107030
  • [11] Lamba, R., Gulati, T., Alharbi, H. F., & Jain, A. (2022). A hybrid system for Parkinson’s disease diagnosis using machine learning techniques. International Journal of Speech Technology, 25, 583-593. https://doi.org/10.1007/s10772-021-09837-9
  • [12] Luo, J., & Collingwood, J. F. (2022). Effective R2 relaxation rate, derived from dual-contrast fast-spin-echo MRI, enables detection of hemisphere differences in iron level and dopamine function in Parkinson’s disease and healthy individuals. Journal of Neuroscience Methods, 382, 109708. https://doi.org/10.1016/j.jneumeth.2022.109708
  • [13] Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185-204. https://doi.org/10.1016/j.knosys.2018.08.003
  • [14] Mozhdehfarahbakhsh, A., Chitsazian, S., Chakrabarti, P., Chakrabarti, T., Kateb, B., & Nami, M. (2021). An MRI-based deep learning model to predict Parkinson’s disease stages. medRxiv. https://doi.org/10.1101/2021.02.19.21252081
  • [15] Nagasubramanian, G., & Sankayya, M. (2021). Multi-variate vocal data analysis for detection of Parkinson disease using deep learning. Neural Computing and Applications, 33(10), 4849-4864. https://doi.org/10.1007/s00521-020-05233-7
  • [16] Pasha, A., & Latha, P. H. (2020). Bio-inspired dimensionality reduction for Parkinson’s disease (PD) classification. Health information science and systems, 8(1), 1-22. https://doi.org/10.1007/s13755-020-00104-w
  • [17] Porter, E., Roussakis, A. A., Lao-Kaim, N. P., & Piccini, P. (2020). Multimodal dopamine transporter (DAT) imaging and magnetic resonance imaging (MRI) to characterize early Parkinson's disease. Parkinsonism & Related Disorders, 79, 26-33. https://doi.org/10.1016/j.parkreldis.2020.08.010
  • [18] Prema Arokia Mary, G., Suganthi, N., & Hema, M. S. (2021). Early prediction of parkinson’s disease from brain mri images using convolutional neural network. Journal of Medical Imaging and Health Informatics, 11(12), 3103-3109. https://doi.org/10.1166/jmihi.2021.3897
  • [19] Senturk, Z. K. (2020). Early diagnosis of Parkinson’s disease using machine learning algorithms. Medical hypotheses, 138(4), 109603. https://doi.org/10.1016/j.mehy.2020.109603
  • [20] Shu, Z., Pang, P., Wu, X., Cui, S., Xu, Y., & Zhang, M. (2020). An integrative nomogram for identifying early-stage Parkinson's disease using non-motor symptoms and white matter-based radiomics biomarkers from whole-brain MRI. Frontiers in aging neuroscience, 12, 457. https://doi.org/10.3389/fnagi.2020.548616
  • [21] Sivaranjini, S., & Sujatha, C. M. (2020). Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimedia tools and applications, 79(21), 15467-15479. https://doi.org/10.1007/s11042-019-7469-8
  • [22] Solana-Lavalle, G., & Rosas-Romero, R. (2021). Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Computer Methods and Programs in Biomedicine, 198, 105793. https://doi.org/10.1016/j.cmpb.2020.105793
  • [23] Xin, J., Zhang, X., Zhang, Z., & Fang, W. (2019). Road extraction of high-resolution remote sensing images derived from DenseUNet. Remote Sensing, 11(21), 2499. https://doi.org/10.3390/rs11212499
  • [24] Yaman, O., Ertam, F., & Tuncer, T. (2020). Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features. Medical Hypotheses, 135, 109483. http://doi.org/10.1016/j.mehy.2019.109483
  • [25] Zhang, J., Li, Y., Gao, Y., Hu, J., Huang, B., Rong, S., & Nie, K. (2020). An SBM-based machine learning model for identifying mild cognitive impairment in patients with Parkinson's disease. Journal of the Neurological Sciences, 418, 117077. https://doi.org/10.1016/j.jns.2020.117077
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-085ef5dd-9315-4b78-924d-908a3e3c9915
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.