PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Underwater acoustic communication system using broadband signal with hyperbolically modulated frequency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The implementation of reliable acoustic underwater communication in shallow waters is a scientific and engineering challenge, mainly due to the permanent occurrence of the multipath phenomenon. The article presents the concept of a transmission system using a broadband signal with hyperbolically modulated frequency (HFM) to transmit data symbols and synchronize data frames. The simulation tests were carried out in channels with Rician fading, reflecting the short- and medium-range shallow water channels. The simulation also took into account the presence of additive Gaussian noise in the channel on the functioning of the receiver. The obtained results prove the high reliability of the underwater communication system based on broadband HFM signals.
Rocznik
Strony
art. no. 2021116
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdańsk
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdańsk
Bibliografia
  • 1. X. Lurton. An Introduction to Underwater Acoustics: Principles and Applications. Springer, 2010.
  • 2. G. Grelowska. Study of Seasonal Acoustic Properties of Sea Water in Selected Waters of the Southern Baltic. Polish Maritime Research, 23:25-30, 2016. DOI: 10.1515/pomr-2016-0004.
  • 3. B. Katsnelson, V. Petnikov, J. Lynch. Fundamentals of Shallow Water Acoustics. Springer, 2012.
  • 4. P.C. Etter. Underwater Acoustic Modeling and Simulation. CRC Press, 2018.
  • 5. H.S. Dol, P. Casari, T. van der Zwan, R. Otnes. Software-Defined Underwater Acoustic Modems: Historical Review and the NILUS Approach. IEEE Journal of Oceanic Engineering, 42:722-737, 2017.
  • 6. D. Garrood. Applications of the MFSK Acoustic Communications System. OCEANS 81, 1981. DOI: 10.1109/OCEANS.1981.1151697.
  • 7. M. Stojanovic, J.A. Catipovic, J.G. Proakis. Phase-coherent digital communications for underwater acoustic channels. IEEE J. Ocean. Eng., 19:100-111, 1994. DOI: 10.1109/48.289455.
  • 8. J.H. Schmidt, A.M. Schmidt, I. Kochanska. Performance of Coherent Modulation Scheme Used in Acoustic Underwater Communication System. Vibrations in Physical Systems, 30(1):2019135, 2019.
  • 9. I. Kochanska, J.H. Schmidt, J. Marszal. Shallow water experiment of OFDM underwater acoustic communications. Archives of Acoustics, 45(1): 11-18, 2020.
  • 10. J.H. Schmidt, A.M. Schmidt, I. Kochanska. Multiple-Input Multiple-Output Technique for Underwater Acoustic Communication System. In Proceedings of 2018 Joint Conference Acoustics, Ustka, Poland, 11-14 September 2018. DOI:10.1109/ACOUSTICS.2018.8502439.
  • 11. J.G. Proakis. Digital Communication. McGrawHill, New York, 2000.
  • 12. Don Torrieri. Principles of Spread-Spectrum Communication Systems. Springer, 2018.
  • 13. J.H. Schmidt. Using Fast Frequency Hopping Technique to Improve Reliability of Underwater Communication System. Applied Sciences, 10(3):1172, 2020. DOI: 10.3390/app10031172.
  • 14. I. Kochanska, R. Salamon, J.H. Schmidt, A.M. Schmidt. Study of the Performance of DSSS UAC System Depending on the System Bandwidth and the Spreading Sequence. Sensors, 21(7):2484, 2021. https://doi.org/10.3390/s21072484.
  • 15. I. Kochanska, J.H. Schmidt. Simulation of Direct-Sequence Spread Spectrum Data Transmission System for Reliable Underwater Acoustic Communications. Vibrations in Physical Systems, 30(1):2019108, 2019.
  • 16. M.K. Simon, M-S. Alouini. Digital Communication over Fading Channels. Wiley-IEEE Press, 2005.
  • 17. A.F. Molisch Wireless Communications. Wiley-IEEE Press, 2010.
  • 18. B. Sklar. Rayleigh fading channels in mobile digital communication systems. Part I. Characterization. IEEE Communications Magazine, 35(7):90-100, 1997.
  • 19. B. Sklar. Rayleigh fading channels in mobile digital communication systems. Part II: Mitigation. IEEE Communications Magazine, 35(9):148-155, 1997.
  • 20. J. Marszal. Experimental Study of Silent Sonar. Archives of Acoustics, 39(1), 2015. DOI: 10.2478/aoa-2014-0011.
  • 21. J.J. Kroszczyński. Pulse compression by means of linear-period modulation. Proc. IEEE, 57(7):1260-1266, 1969.
  • 22. J. Yang, T.K. Sarkar. Doppler-invariant property of hyperbolic frequency modulated waveform. Microwave and optical technology letters, 48(8):1174-1179, 2006.
  • 23. J.G. Proakis, M. Salehi, G. Bauch. Contemporary Communication Systems using Matlab (Third Ed.). Prentice Hall, Cengage Learning 2013.
  • 24. I. Kochanska, J.H. Schmidt. Estimation of Coherence Bandwidth for Underwater Acoustic Communication Channel. In Proceedings of 2018 Joint Conference Acoustics, Ustka, Poland, 11-14 September 2018. DOI: 10.1109/ACOUSTICS.2018.8502331.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0859d268-d339-4c75-8d1c-405fd183c5e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.