Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Chemistry and catalysts of deep hydrodesulfurization process
Języki publikacji
Abstrakty
W artykule przedstawiono zagadnienia związane ze zrozumieniem mechanizmu katalitycznego procesu głębokiego hydroodsiarczania (HDS). Omówiono rodzaje związków siarki występujących w surowcach naftowych oraz ich reaktywność w aspekcie drugiego stopnia hydrorafinacji. Opisano typy katalizatorów procesu HDS oraz przedstawiono zagadnienia związane z wykorzystaniem nowych katalizatorów (nie siarczkowych) mających potencjalne zastosowanie w drugim (głębokim) stopniu hydrorafinacji.
The paper presents issues related to the understanding of the catalytic mechanism of the deep hydrodesulphurization process (HDS). The types of sulfur compounds present in petroleum products and their reactivity in terms of the second degree of hydrotreatment are discussed. The types of catalysts for the HDS process were described and the issues related to the use of new (non-sulfide) catalysts which have potential application in the second (deep) hydrotreatment are presented.
Czasopismo
Rocznik
Tom
Strony
685--690
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Katedra Technologii Paliw, Wydział Energetyki Paliw. Akademia Górniczo-Hutnicza al. A. Mickiewicza 30 30-059 Kraków
Bibliografia
- [1] Alsolami B., Carneiro J.T., Moulijn J.A., Makkee M.: On-site low-pressure diesel HDS for fuel cell applications: Deepening the sulfur content to <1 ppm. Fuel 2011, vol. 90, nr 10, s. 3021-3027.
- [2] Bej S.K., Maity S.K., Turaga U.T.: Search for an Efficient 4,6-DMDBT Hydrodesulfurization Catalyst: A Review of Recent Studies. Energy & Fuels 2004, vol. 18, nr 5, s. 1227-1237.
- [3] Boullosa-Eiras S., Lødeng R., Bergem H., Stocker M., Hannevold L., Blekkan E.A.: Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts. Catalysis Today 2014, vol. 223, s. 44-53.
- [4] Breysse M., Djega-Mariadassou G., Pessayre S., Geantet C., Vrinat M., Pérot G., Lemaire M.: Deep desulfurization: reactions, catalysts and technological challenges. Catalysis Today 2003, vol. 84, nr 3-4, s. 129-138.
- [5] Czachowska-Kozłowska D., Lewandowski M.: Transformations of dibenzothiophene and alkyldibenzothiophenes in advanced hydrodesulfurization processes. Przemysł Chemiczny 2003, vol. 82, nr 12, s. 1484-1490.
- [6] Czachowska-Kozłowska D., Lewandowski M.: New processes for deep hydrodesulfurization of diesel fuels. Przemysł Chemiczny 2002, vol. 81, nr 9, s. 577-582.
- [7] Egorova M., Prins R.: Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3. Journal of Catalysis 2004, vol. 224, nr 2, s. 278-287.
- [8] Fang M., Tang W., Yu Ch., Xia L., Xia Z., Wang Q., Luo Z.: Performance of Ni-rich bimetallic phosphides on simultaneous quinoline hydrodenitrogenation and dibenzothiophene hydrodesulfurization. Fuel Processing Technology 2015, vol. 129,s.236-244.
- [9] Furimsky E.: Metal carbides and nitrides as potential catalysts for hydroprocessing. Applied Catalysis A: General 2003, vol. 240, nr 1-2, s. 1-28.
- [10] Gates B.C., Topsoe H.: Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. Polyhedron 1997, vol. 16, nr 18, s. 3213-3217.
- [11] Girgis M.J., Gates B.C.: Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Industrial & Engineering Chemistry Research 1991, vol. 30, nr 9, s. 2021-2058.
- [12] Hynaux A., Sayag C., Suppan S., Trawczyński J., Lewandowski M., Szymańska-Kolasa A., Djega-Mariadassou G.: Kinetic study of the hydrodesulfurization of dibenzothiophene over molybdenum carbides supported on functionalized carbon black composite: Influence of indole. Applied Catalysis B: Enviromental 2007, vol. 72, nr 1-2, s. 62-70.
- [13] Kabe T., Aoyama Y., Wang D., Ishihara A., Qian W., Hosoya M., Zhang Q.: Effects of H2S on hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene on alumina-supported NiMo and NiW catalysts. Applied Catalysis 2001, vol. 209, nr 1-2, s. 237-247.
- [14] Kim G., Knudsen B., Cooper H., Topsøe H.: Catalyst and process technologies for ultra low sulfur diesel. Applied Catalysis 1999, vol. 189, nr 2, s. 205-215.
- [15] Koltai T., Macaud M., Guevara A., Schulz E., Lemaire M., Bacaud R., Vrinat M.: Comparative inhibiting effect of poly-condensed aromatics and nitrogen compounds on the hydrodesulfurization of alkyldibenzothiophenes. Applied Catalysis A: General 2002, vol. 231, nr 1-2, s. 253-261.
- [16] Kwark Ch., Lee J.J., Bae J.S., Moon S.H.: Poisoning effect of nitrogen compounds on the performance of CoMoS/Al2O3 catalyst in the hydrodesulfurization of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyldibenzothiophene. Applied Catalysis B: Enviromental 2001, vol. 35, nr 1, s. 59-68.
- [17] Lewandowski M.: Hydrotreating activity of bulk NiB alloy in model reaction of hydrodrodenitrogenation of carbazole. Applied Catalysis B: Environmental 2015, vol. 168, s. 322-332.
- [18] Lewandowski M.: Hydrotreating activity of bulk NiB alloy in model reaction of hydrodesulfurization 4,6-dimethyl-dibenzothiophene. Applied Catalysis B: Environmental 2014, vol. 160-161,s. 10-21.
- [19] Lewandowski M., Da Costa P., Benichou D., Sayag C.: Catalytic performance of platinum doped tungsten carbide in simultaneous hydrodenitrogenation and hydrodesulphurization. Applied Catalysis B: Environmental 2010, vol. 93, nr 3-4, s. 241-249.
- [20] Lewandowski M., Sarbak Z.: Simultaneous HDS and HDN over supported PtSn catalysts in comparison to commercial NiMo/Al2O3. Applied Catalysis B: Environmental 2008, vol. 79, nr 4, s. 313-322.
- [21] Lewandowski M., Szymańska-Kolasa A., Da Costa P., Sayag C.: Catalytic performances of platinum doped molybdenum carbide for simultaneous hydrodenitrogenation and hydrodesulfurization. Catalysis Today 2007, vol. 119, nr 1-4, s. 31-34.
- [22] Lewandowski M., Szymańska-Kolasa A., Sayag C., Beaunier P., Djega-Mariadassou G.: Atomic level characterization and sulfur resistance of unsupport W2C during dibenzothiophene hydrodesulfurization. Classical kinetics simulation of the reaction. Applied Catalysis B: Environmental 2014, vol. 144, s. 750-759.
- [23] Lorentz C., Laurenti D., Zotin J.L., Geantet C.: Comprehensive GC x GC chromatography for the characterization of sulfur compound in fuels: A review. Catalysis Today 2017, vol. 292, s. 26-37.
- [24] Mijoin J., Perot G., Bataille F., Lemberton J.L., Breysse M., Kasztetan S.: Mechanistic considerations on the involvement of dihydrointermediates in the hydrodesulfurization of dibenzothiophene-type compounds over molybdenum sulfide catalysts. Catalysis Letters 2001, vol. 71, nr 3-4, s. 139-145.
- [25] Milenkovic A., Macaud M., Schulz E., Koltai T., Loffeda D., Vrinat M., Lemaire M.R.: How could organic synthesis help the understanding of the problems of deep hydrodesulfurization of gasoils? Compte Rendus de l'Academie des Sciences - Series II C Chemistry 2000, vol. 3, nr 6, s. 459-463.
- [26] Oyama S.T., Lee Y-K.: The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT. Journal of Catalysis 2008, vol. 258, nr 2, s. 393-400.
- [27] Pawelec B., Nawarro R.M., Campos-Martin J., Fierro J.L.G.: Towards near zero-sulfur liquid fuels: a perspective review. Catalysis Science and Technology 2011, vol. 1, s. 23-42.
- [28] Shafi R., Hutchings G.J.: Hydrodesulfurization of hindered dibenzothiophenes: an overview. Catalysis Today 2000, vol. 59, nr 3-4, s. 423-442.
- [29] Shu Y., Lee Y-K., Oyama S.T.: Structure-sensitivity of hydrodesulfurization of 4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts. Journal of Catalysis 2005, vol. 236, nr 1, s. 112-121.
- [30] Song C.: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today 2003, vol. 86, nr 1-4, s. 211-263.
- [31] Stanislaus A., Marafi A., Rana M.S.: Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today 2010, vol. 153, nr 1-2, s. 1-68.
- [32] Szymańska A., Lewandowski M., Sayag C., Djéga-Mariadassou G.: Kinetic study of the hydrodenitrogenation of carbazole over bulk molybdenum carbide. Journal of Catalysis 2003, vol. 218, nr 1, s. 24-31.
- [33] Szymańska-Kolasa A., Lewandowski M., Sayag C., Brodzki D., Djéga-Mariadassou G.: Comparison between tungsten carbide and molybdenum carbide for the hydrodenitrogenation of carbazole. Catalysis Today 2007, vol. 119, nr 1-4, s. 35-38.
- [34] Szymańska-Kolasa A., Lewandowski M., Sayag C., Djéga-Mariadassou G.: Comparison of molybdenum carbide and tungsten carbide for the hydrodesulfurization of dibenzothiophene. Catalysis Today 2007, vol. 119, nr 1-4, s. 7-12.
- [35] Topsoe H., Clause B.S., Massoth F.E.: Hydrotreating Catalysis. Springer, Berlin 1996.
- [36] Vrinat M., Laurenti D., Geantet Ch.: Use of competitive kinetics for the understanding of deep hydrodesulfurization and sulfide catalysts behawior. Applied Catalysis B: Enviromental 2012, vol. 128, s. 3-9.
- [37] Yang L., Li X., Wang A., Prins R., Chen Y., Duan X.: Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over bulk tungsten phosphide. Journal of Catalysis 2015, vol. 330, s. 330-343.
- [38] Zepeda T.A., Pawelec B., Fierro J.L.G., Halachev T: Removal of refractory S-containing compounds from liquid fuels on novel bifunctional CoMo/HMS catalysts modified with Ti. Applied. Catalysis B: Environmental 2007, vol. 71, nr 3-4, s. 223-236.
- [39] Zeuthen P., Knudsen K.G., Whitehurst D.D.: Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment. Catalysis Today 2001, vol. 65, nr 2-4, s. 307-314.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0853b7bf-3e89-4355-8f41-051a975db81d