PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of dissimilar Al-Cu BFSW welds; interfacial microstructure, flow mechanism and intermetallics formation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to elucidate the flow features of the dissimilar Al-Cu welded plates. The welding method used is Bobbin Friction Stir Welding (BFSW), and the joint is between two dissimilar materials, aluminium alloy (AA6082-T6) and pure copper. Weld samples were cut from along the weld line, and the cross-sections were polished and observed under an optical microscope (OM). Particular regions of interest were examined under a scanning electron microscope (SEM) and analysed with Energy Dispersive X-ray Spectroscopy (EDS) using the AZtec software from Oxford Instruments. The results and images attained were compared to other similar studies. The reason for fracture was mainly attributed to the welding parameters used; a higher rotational speed may be required to achieve a successful BFSW between these two materials. The impact of welding parameters on the Al-Cu flow bonding and evolution of the intermetallic compounds were identified by studying the interfacial microstructure at the location of the tool action. The work makes an original contribution to identifying the solid-phase hybrid bonding in Al-Cu joints to improve the understanding of the flow behaviours during the BFSW welding process. The microstructural evolution of the dissimilar weld has made it possible to develop a physical model proposed for the flow failure mechanism.
Rocznik
Strony
52--78
Opis fizyczny
Bibliogr. 56 poz., tab., rys.
Twórcy
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
Bibliografia
  • 1. Mehta, K.P.; Badheka, V.J. A review on dissimilar friction stir welding of copper to aluminum: Process, properties, and variants. Materials and Manufacturing Processes 2016, 31, 233-254.
  • 2. Sharma, N.; SIDDIQUEE, A.N. Friction stir welding of aluminum to copper - an overview. Transactions of Nonferrous Metals Society of China 2017, 27, 2113-2136.
  • 3. Fonda, R.; Knipling, K. Texture development in friction stir welds. Science and Technology of Welding and Joining 2011, 16, 288-294.
  • 4. Xue, P.; Ni, D.; Wang, D.; Xiao, B.; Ma, Z. Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar al–cu joints. Materials Science and Engineering: A 2011, 528, 4683-4689.
  • 5. Threadgill, P.; Leonard, A.; Shercliff, H.; Withers, P. Friction stir welding of aluminium alloys. International Materials Reviews 2009, 54, 49-93.
  • 6. Thomas, W.; Nicholas, E.; Needham, J.; Murch, M.; Temple-Smith, P.; Dawes, C. Friction stir butt welding, international patent application no. PCT/GB92 Patent application 1991.
  • 7. Thomas, W.; Nicholas, E. Friction stir welding for the transportation industries. Materials & Design 1997, 18, 269-273.
  • 8. Fuse, K.; Badheka, V. Bobbin tool friction stir welding: A review. Science and Technology of Welding and Joining 2019, 24, 277-304.
  • 9. Wang, G.-Q.; Zhao, Y.-H.; Tang, Y.-Y. Research progress of bobbin tool friction stir welding of aluminum alloys: A review. Acta Metallurgica Sinica (English Letters), 1-17.
  • 10. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals 2019, 9, 1059.
  • 11. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals 2018, 8, 375.
  • 12. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Texture evolution in aa6082-t6 BFSW welds: Optical microscopy and ebsd characterisation. Materials 2019, 12, 3215.
  • 13. Sued, M.; Tamadon, A.; Pons, D. Material flow visualization in bobbin friction stir welding by analogue model. Proceedings of Mechanical Engineering Research Day 2017, 2017, 1-2.
  • 14. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Development of metallographic etchants for the microstructure evolution of AA6082-T6 BFSW welds. Metals 2017, 7, 423.
  • 15. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals 2018, 8, 33.
  • 16. Sued, M.K. Fixed bobbin friction stir welding of marine grade aluminium. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2015.
  • 17. Thomas, W.; Wiesner, C.; Marks, D.; Staines, D. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Science and Technology of Welding and Joining 2009, 14, 247-253.
  • 18. Cui, L.; Yang, X.; Zhou, G.; Xu, X.; Shen, Z. Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints. Materials Science and Engineering: A 2012, 543, 58-68.
  • 19. Pal, S.; Phaniraj, M.P. Determination of heat partition between tool and workpiece during FSW of SS 304 using 3D CFD modeling. Journal of Materials Processing Technology 2015, 222, 280-286.
  • 20. Hilgert, J.; Dos Santos, J.; Huber, N. Shear layer modelling for bobbin tool friction stir welding. Science and Technology of Welding and Joining 2012, 17, 454-459.
  • 21. Hilgert, J.; Schmidt, H.; Dos Santos, J.; Huber, N. Thermal models for bobbin tool friction stir welding. Journal of Materials Processing Technology 2011, 211, 197-204.
  • 22. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. In Analogue modelling of bobbin tool friction stir welding, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.
  • 23. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. In Preparation of plasticine material for analogue modelling, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.
  • 24. Colligan, K. Material flow behavior during friction welding of aluminum. Welding Journal 1999, 75, 229-237.
  • 25. Fonda, R.; Reynolds, A.; Feng, C.; Knipling, K.; Rowenhorst, D. Material flow in friction stir welds. Metallurgical and Materials Transactions A 2013, 44, 337-344.
  • 26. Hilgert, J.; Hütsch, L.L.; dos Santos, J.; Huber, N. In Material flow around a bobbin tool for friction stir welding, Excerpt from the Proceedings of the COMSOL Conference, 2010.
  • 27. Liechty, B.; Webb, B. Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools and Manufacture 2008, 48, 1474-1485.
  • 28. He, X.; Gu, F.; Ball, A. A review of numerical analysis of friction stir welding. Progress in Materials Science 2014, 65, 1-66.
  • 29. Trueba, L.; Torres, M.A.; Johannes, L.B.; Rybicki, D. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. International Journal of Material Forming 2018, 11, 559-570.
  • 30. Shrivastava, A.; Pfefferkorn, F.E.; Duffie, N.A.; Ferrier, N.J.; Smith, C.B.; Malukhin, K.; Zinn, M. Physics-based process model approach for detecting discontinuity during friction stir welding. The International Journal of Advanced Manufacturing Technology 2015, 79, 605-614.
  • 31. Argesi, F.B.; Shamsipur, A.; Mirsalehi, S.E. Dissimilar joining of pure copper to aluminum alloy via friction stir welding. Acta Metallurgica Sinica (English Letters) 2018, 31, 1183-1196.
  • 32. Wahid, M.A.; Siddiquee, A.N.; Khan, Z.A.; Asjad, M. Friction stir welds of al alloy-cu: An investigation on effect of plunge depth. Archive of Mechanical Engineering 2016, 63, 619-634.
  • 33. Moradi, M.M.; Aval, H.J.; Jamaati, R. Effect of tool pin geometry and weld pass number on microstructural, natural aging and mechanical behaviour of sic-incorporated dissimilar friction-stir-welded aluminium alloys. Sādhanā 2019, 44, 9.
  • 34. Gharavi, F.; Ebrahimzadeh, I.; Amini, K.; Sadeghi, B.; Dariya, P. Effect of welding heat input on the microstructure and mechanical properties of dissimilar friction stir-welded copper/brass lap joint. Materials Research 2019, 22.
  • 35. Ting, P.L.; Tsai, C.Y.; Chiu, L.H.; Cheng, C.P. In Tensile strength and metallurgical analysis in anodized al/cu joint using friction stir welding, Key Engineering Materials, 2015; Trans Tech Publ: pp 490-495.
  • 36. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-t6 BFSW welds. Technologies 2019, 7, 80.
  • 37. Barcellona, A.; Buffa, G.; Fratini, L.; Palmeri, D. On microstructural phenomena occurring in friction stir welding of aluminium alloys. Journal of Materials Processing Technology 2006, 177, 340-343.
  • 38. Fonda, R.; Bingert, J. Texture variations in an aluminum friction stir weld. Scripta Materialia 2007, 57, 1052-1055.
  • 39. Fonda, R.; Bingert, J.; Colligan, K. Development of grain structure during friction stir welding. Scripta Materialia 2004, 51, 243-248.
  • 40. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation 2020, 3, 2.
  • 41. Garg, A.; Raturi, M.; Bhattacharya, A. Influence of additional heating in friction stir welding of dissimilar aluminum alloys with different tool pin profiles. The International Journal of Advanced Manufacturing Technology, 1-21.
  • 42. Wiedenhoft, A.G.; Amorim, H.J.d.; Rosendo, T.d.S.; Tier, M.A.D.; Reguly, A. Effect of heat input on the mechanical behaviour of Al-Cu FSW lap joints. Materials Research 2018, 21.
  • 43. Schneider, J.; Cobb, J.; Carpenter, J.S.; Mara, N.A. Maintaining nano-lamellar microstructure in friction stir welding (FSW) of accumulative roll bonded (arb) cu-nb nano-lamellar composites (nlc). Journal of Materials Science & Technology 2018, 34, 92-101.
  • 44. Saeid, T.; Abdollah-Zadeh, A.; Sazgari, B. Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. Journal of Alloys and Compounds 2010, 490, 652-655.
  • 45. Muthu, M.F.X.; Jayabalan, V. Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints. Journal of Materials Processing Technology 2015, 217, 105-113.
  • 46. Shah, L.; Othman, N.; Gerlich, A. Review of research progress on aluminium–magnesium dissimilar friction stir welding. Science and Technology of Welding and Joining 2018, 23, 256-270.
  • 47. Tamadon, A.; Baghestani, A.; Bajgholi, M.E. Influence of wc-based pin tool profile on microstructure and mechanical properties of AA1100 FSW welds. Technologies 2020, 8, 34.
  • 48. Sharma, N.; Siddiquee, A.N.; Khan, Z.A.; Mohammed, M.T. Material stirring during FSW of Al–Cu: Effect of pin profile. Materials and Manufacturing Processes 2018, 33, 786-794.
  • 49. Carlone, P.; Astarita, A.; Palazzo, G.S.; Paradiso, V.; Squillace, A. Microstructural aspects in Al–Cu dissimilar joining by FSW. The International Journal of Advanced Manufacturing Technology 2015, 79, 1109-1116.
  • 50. Xue, P.; Xiao, B.; Ni, D.; Ma, Z. Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering: A 2010, 527, 5723-5727.
  • 51. Tamadon, A.; Pons, D.J.; Clucas, D. Microstructural study on thermomechanical behaviour of 6082-T6 aluminium BFSW weld plates. In Materials@UC 2018, Christchurch, New Zealand, 2018.
  • 52. Tamadon, A.; Pons, D.J.; Clucas, D. Thermomechanical performance of bobbin tool design as an innovative variant for friction stir welding. In Manufacturing and Design Conference (MaD 2019) Auckland, New Zealand, 2019.
  • 53. Tamadon, A. Characterization of flow-based bobbin friction stir welding process. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2019.
  • 54. Tamadon, A.; Pons, D.; Clucas, D. Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method. Advances in Materials Science 2020, 20, 56-70.
  • 55. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics 2020, 1, 3-19.
  • 56. Silva, B.H.; Zepon, G.; Bolfarini, C.; dos Santos, J.F. Refill friction stir spot welding of aa6082-t6 alloy: Hook defect formation and its influence on the mechanical properties and fracture behavior. Materials Science and Engineering: A 2020, 773, 138724.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08523983-b63c-40ac-a205-107f4376ee2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.