PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

False Piezoresistive Effect Detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Possibility of the use commercial carbon-polymer pastes for preparation thick-film resistors for linear strain sensors application was tested. The research showed that the polymer thick-film resistors are characterized by the piezoresistive effect up to 2% strain. For higher strain small cracks appeared in the resistive film. Presence of the cracks influenced resistance of the sensor. It is so called false piezoresistive effect. The cracks may cause instability of the sensor. Visual detection of the cracks is hardly possible because of their small dimensions. The indicator of cracks creation in resistive film was found.
Twórcy
  • Warsaw University of Technology
  • Lukasiewicz Research Network - Tele and Radio Research Institute
  • Lukasiewicz Research Network - Tele and Radio Research Institute
  • Lukasiewicz Research Network - Tele and Radio Research Institute
  • Lukasiewicz Research Network - Tele and Radio Research Institute
  • Lukasiewicz Research Network - Tele and Radio Research Institute
Bibliografia
  • [1] M. Amjadi, K. Kyung, I. Park, M. Sitti, “Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications”, Advanced Functional Materials, vol. 26, pp. 1678-1698, March 2016. https://doi.org/10.1002/adfm.201504755
  • [2] B.F. Goncalves, P. Costa, J. Oliveira, S. Ribeiro, V. Correia, G Botelho, S. Lanceros-Mendez, ”Green Solvent Approach for Printable Large Deformation Thermoplastic Elastomer Based Piezoresistive Sensors and Their Suitability for Biomedical Applications”, Journal of Polymer Science, Part B: Polymer Physics, vol. 54(20), pp. 2092 - 2103, 2016. https://doi.org/10.1002/polb.24118
  • [3] H.F. Castro, V. Correia, N. Pereira, P. Costab, J. Oliveiraa, S. Lanceros-Mendez, “Printed Wheatstone bridge with embedded polymer based piezoresistive sensors for strain sensing applications”, Additive Manufacturing, vol. 20, pp. 119 - 125, 2018. https://doi.org/10.1016/j.addma.2018.01.004
  • [4] B.F. Goncalves, J. Oliveira, P. Costa, V. Correia, P. Martins, G. Botelho, S. Lanceros-Mendez, “Development of water-based printable piezoresistive sensors for large strain applications”, Composites Part B, vol. 112, pp. 344 - 352. 2017. https://doi.org/10.1016/j.compositesb.2016.12.047
  • [5] J.R. Dios, , C. Garcia-Astrain, S. Goncalves, P. Costa, S. Lanceros-Mendez, S. “Piezoresistive performance of polymer-substrated materials as a function of the matrix and nanofiller content to walking detection application”, Composites Science and Technology, vol. 181, 107678, pp. 1 - 12, 2019. https://doi.org/10.1016/j.compscitech.2019.107678
  • [6] M. Arif, S. Kumar, T. Gupta, K. Varadarajan, “Strong linear-piezoresistive-response of carbon nanostructures reinforced hyperelastic polymer nanocomposites“, Composites Part A, vol. 113, pp. 141 - 149, 2018. https://doi.org/10.1016/j.compositesa.2018.07.02
  • [7] X. Yang, L. Sun, C. Zhang, B. Huang, Y. Chu, B. Zhan,) “Modulating the sensing behaviors of poly(styrene-ethylene-butylene-styrene)/carbon nanotubes with low-dimensional fillers for large deformation sensors”, Composites Part B, vol. 160, pp. 605 - 614, March 2019. https://doi.org/10.1016/j.compositesb.2018.12.119
  • [8] D. Thuau, C. Ayela, P. Poulin, I. Dufour, “Highly piezoresistive hybrid MEMS sensors”, Sensors and Actuators A: Physical, vol. 209, pp. 161 - 168, 2014. http://dx.doi.org/10.1016/j.sna.2014.01.037
  • [9] N. Serra, T. Maeder, P. Ryser, “Piezoresistive effect in epoxy-graphite composites”, Sensors and Actuators A: Physical, vol. 186, pp. 198 - 202, Oct. 2012. https://doi.org/10.1016/j.sna.2012.04.025
  • [10] C.A. Gutierrez, E. Meng, “Low-cost carbon thick-film strain sensors for implantable applications”, Journal of Micromechanics and Microengineering, vol. 20, 095028 (12 pp), 2010. https://doi:10.1088/09 60-1317/20/9/095028
  • [11] C. Jacq, T. Maeder, S. Emery, M. Simoncini, E. Meurville, P. Ryser, X, “Investigation of Polymer Thick-Film Piezoresistors for Medical Wrist Rehabilitation and Artificial Knee Load Sensors”, EUROSENSORS 2014, The XXVIII Edition of the Conference Series, Procedia Engineering, vol. 87, pp. 1194 - 1197, 2014. https://doi.org/10.1016/j.proeng.2014.11.380
  • [12] J. Borecki, A. Arazna, K. Janeczek, J. Kalenik, M. Kalenik, W. Steplewski, R. Tarakowski,”Piezoresistive effect in embedded thick-film resistors”, Circuit World, vol. 45(1), pp. 31 - 36, 2019. https://doi.org/10.1108/CW-11-2018-0086
  • [13] Y. Xiao, Z. Li, C. Hu, L. Yang, D. Zhang, “A stretchable flexible strain sensor with high sensitivity and fast response fabricated by embedded 3D printing of the hybrid polydimethylsiloxane/conductive carbon paste composites”, Journal of Applied Polymer Science, vol. 141(26), pp. 1-13, 2024. https://doi.org/10.1002/app.55558
  • [14] M. Prudenziati, B. Morten, G. Ruffi, “Very high strain sensitivity in thick-film resistors: real and false super gauge factors”, Sensors and Actuators, vol. 19(4), pp. 401-414, Sept. 1989. https://doi.org/10.1016/0250-6874(89)87089-1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08516228-62ba-483c-b781-d645d837ea4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.