PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An experimental and theoretical piezoelectric energy harvesting from a simply supported beam with moving mass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The feasibility of harvesting electrical energy from mechanical vibration is demonstrated in the thesis. In the technique, energy is harvested from simply supported beam vibration under a moving mass using a thin piezoelectric material. Design/methodology/approach: The structure is represented by a basic beam of length L that is supported at both ends and traversed by a moving mass M travelling at a constant velocity v. The Euler-Bernoulli differential equation describes its behaviour. The dynamic analysis of a beam is performed by using three moving masses of (35.61, 65.81, and 79.41) gr each travelling three uniform speeds of (1.6, 2 and 2.4) m/s. A differential equation of the electromechanical system is obtained by transforming the piezoelectric constitutive equation and solved numerically by MATLAB. Findings: The results indicate that the numerical and experimental values for the midpoint deflection of the beam and the piezoelectric voltage are very close. Research limitations/implications: Using the COMSOL programme, the proposed approach is checked by comparing results with data obtained by the finite element method (FEM). An experimental setup was also built and constructed to determine the voltage created by the piezoelectric patch and the beam response as a result of the mass travelling along the beam. Practical implications: The results show that the dynamic deflection, piezoelectric voltage, and piezoelectric energy harvesting all increase as the speed and magnitude of the moving mass increase. The harvesting power vs. load resistance curve begins at zero, increases to a maximum value, and then remains almost constant as the resistance is increased further. The optimal length of the piezoelectric patch was obtained to be 0.63 m. When the length of the beam increases, the resonant frequency decreases, and at the same time the harvested energy increases. However, increasing the beam thickness has the opposite effect; whereas raising the beam width does not affect the resonant frequency but decreases energy harvesting. Originality/value: The most essential point here is the need to have correctly built scale models. They can provide a substantial amount of information at a low cost, accommodate a variety of test settings, and aid in the selection and verification of the most effective analytical model to resolve the actual issue.
Rocznik
Strony
13--29
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Mechanical Engineering Department, University of Baghdad, Baghdad, Iraq
  • Mechanical Engineering Department, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. M.A. Ilyas, Piezoelectric Energy Harvesting, Momentum Press, New York, 2018.
  • 2. E. Blokhina, A. El Aroudi, E. Alarcon, D. Galayko, Nonlinearity in Energy Harvesting Systems Micro and Nanoscale Applications, Springer, Cham, 2016. DOI: https://doi.org/10.1007/978-3-319-20355-3
  • 3. M.A. Foda, Z. Abduljabbar, A Dynamic Green Function Formulation for the Response of a Beam Structure to a Moving Mass, Journal of Sound and Vibration 210/3 (1998) 295-306. DOI: https://doi.org/10.1006/jsvi.1997.1334
  • 4. L. Fryba, Vibration of Solids and Structures Under Moving Load, Thomas Telford, London, 1999.
  • 5. C. Bilello, L.A. Bergman, D. Kuchma, Experimental Investigation of a Small-Scale Bridge Model under a Moving Mass, Journal of Structural Engineering 130/5 (2004) 799-804. DOI: https://doi.org/10.1061/(asce)0733-9445(2004)130:5(799)
  • 6. S.H. Bakhy, M. Al-Waily, M.A. Al-Shammari, Analytical and numerical investigation of the free vibration of functionally graded materials sandwich beams, Archives of Materials Science and Engineering 110/2 (2021) 72-85. DOI: https://doi.org/10.5604/01.3001.0015.4314
  • 7. E. Abdeddine, A. Majid, Z. Beidouri, K. Zarbane, Experimental investigation for non-linear vibrations of free supported and cantilever FFF rectangular plates, Archives of Materials Science and Engineering 116/2 (2022) 49-56. DOI: https://doi.org/10.5604/01.3001.0016.1189
  • 8. S.F. Ali, M.I. Friswell, S. Adhikari, Analysis of Energy Harvesters for Highway Bridges, Journal of Intelligent Material Systems and Structures 22/16 (2011) 1929-1938. DOI: https://doi.org/10.1177/1045389X11417650
  • 9. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting, John Wiley & Sons, New York, 2011.
  • 10. Y. Zhang, S.C.S. Cai, L. Deng, Piezoelectric-based Energy Harvesting in Bridge Systems, Journal of Intelligent Material Systems and Structures 25/12 (2014) 1414-1428. DOI: https://doi.org/10.1177/1045389X13507354
  • 11. S.S. Murugan, P. Vijayakumar, Identification of ultrasonic frequency for water mist generation using piezoelectric transducer, Archives of Materials Science and Engineering 83/2 (2017) 74-78. DOI: https://doi.org/10.5604/01.3001.0009.9170
  • 12. K. Bendine, M. Hamdaoui, B.F. Boukhoulda, Piezoelectric Energy Harvesting from a Bridge Subjected to Time-Dependent Moving Loads Using Finite Elements, Arabian Journal for Science and Engineering 44/6 (2019) 5743-5763. DOI: https://doi.org/10.1007/s13369-019-03721-0
  • 13. Z.-X. Yang, X.-T. He, D.-D. Peng, J.-Y. Sun, Free Damping Vibration of Piezoelectric Cantilever Beams: A Biparametric Perturbation Solution and Its Experimental Verification, Applied Sciences 10/1 (2020) 215. DOI: https://doi.org/10.3390/app10010215
  • 14. J.X. Wang, J.C. Li, W. Bin Su, X. Zhao, C.M. Wang, A multi-folded-beam piezoelectric energy harvester for wideband energy harvesting under ultra-low harmonic acceleration, Energy Reports 8 (2022) 6521-6529. DOI: https://doi.org/10.1016/j.egyr.2022.04.077
  • 15. C. Xiong, N. Wu, Y. He, Y. Cai, X. Zeng, P. Jin, M. Lai, Nonlinear Energy Harvesting by Piezoelectric Bionic 'M' Shape Generating Beam Featured in Reducing Stress Concentration, Micromachines 14/5 (2023) 1007. DOI: https://doi.org/10.3390/mi14051007
  • 16. M. Dehestani, M. Mofid, A. Vafai, Investigation of Critical Influential Speed for Moving Mass Problems on Beams, Applied Mathematical Modelling 33/10 (2009) 3885-3895. DOI: https://doi.org/10.1016/j.apm.2009.01.003
  • 17. H. Han, X. Qiu, Z. Xu, R. Bai, Vibration Analysis of the Beam Structure under the Moving Mass, Vibroengineering Procedia 5 (2015) 446-451.
  • 18. D.R. Parhi, A.K. Behcra, Dynamic Deflection of a Cracked Beam with Moving Mass, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 211/1 (1997) 77-87. DOI: https://doi.org/10.1243/0954406971521674
  • 19. L. Meirovitch, Elements of Vibration Analysis, Second Edition, McGraw-Hill, NewYork, 1986.
  • 20. M.J. Jweeg, D.A. Alazawi, Q.H. Jebur, M. Al-Waily, N.J. Yasin, Hyperelastic modelling of rubber with multi-walled carbon nanotubes subjected to tensile loading, Archives of Materials Science and Engineering 114/2 (2022) 69-85. DOI: https://doi.org/10.5604/01.3001.0016.0027
  • 21. V. Kahya, Dynamic analysis of pre-stressed elastic beams under moving mass using different beam models, Challenge Journal of Structural Mechanics 1/3 (2015) 106-116. DOI: https://doi.org/10.20528/cjsmec.2015.06.018
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-084dee58-a18a-493f-be90-cc9360255727
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.