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ABSTRACT

Purpose: The feasibility of harvesting electrical energy from mechanical vibration is 
demonstrated in the thesis. In the technique, energy is harvested from simply supported beam 
vibration under a moving mass using a thin piezoelectric material.
Design/methodology/approach: The structure is represented by a basic beam of length 
L that is supported at both ends and traversed by a moving mass M travelling at a constant 
velocity v. The Euler-Bernoulli differential equation describes its behaviour. The dynamic 
analysis of a beam is performed by using three moving masses of (35.61, 65.81, and 79.41) 
gr each travelling three uniform speeds of (1.6, 2 and 2.4) m/s. A differential equation of the 
electromechanical system is obtained by transforming the piezoelectric constitutive equation 
and solved numerically by MATLAB.
Findings: The results indicate that the numerical and experimental values for the midpoint 
deflection of the beam and the piezoelectric voltage are very close.
Research limitations/implications: Using the COMSOL programme, the proposed 
approach is checked by comparing results with data obtained by the finite element method 
(FEM). An experimental setup was also built and constructed to determine the voltage created 
by the piezoelectric patch and the beam response as a result of the mass travelling along the 
beam.
Practical implications: The results show that the dynamic deflection, piezoelectric voltage, 
and piezoelectric energy harvesting all increase as the speed and magnitude of the moving 
mass increase. The harvesting power vs. load resistance curve begins at zero, increases to a 
maximum value, and then remains almost constant as the resistance is increased further. The 
optimal length of the piezoelectric patch was obtained to be 0.63 m. When the length of the 
beam increases, the resonant frequency decreases, and at the same time the harvested energy 
increases. However, increasing the beam thickness has the opposite effect; whereas raising the 
beam width does not affect the resonant frequency but decreases energy harvesting.
Originality/value: The most essential point here is the need to have correctly built scale 
models. They can provide a substantial amount of information at a low cost, accommodate a 
variety of test settings, and aid in the selection and verification of the most effective analytical 
model to resolve the actual issue.
Keywords: Time response, Moving mass, Electrical energy, Energy harvesting, Bridge 
vibration, Piezoelectric
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1. Introduction 
 

Energy harvesting has garnered considerable attention 
from a variety of disciplines in recent years, owing to its 
potential significance as a critical technology for electronic 
systems that are self-powered and consume very little 
electricity. Energy harvesting, in general, is the process of 
extracting ambient energy from the environment that 
surrounds a system and converting it into another form 
(often electricity) and then using that energy to provide 
energy for the system described above. It is in contrast to 
powering a system with sources of energy that are finite, like 
oil, batteries, coal, or fuel cells [1]. Piezoelectric materials 
are frequently employed as transducers, converting 
electrical energy to force or mechanical motion, as well as 
in the opposite direction. Due to piezoelectric materials' 
ability to convert mechanical power into electrical power, 
ambient motion (typically vibration) can be converted to 
electrical energy stored and used by electronic devices like 
sensor transmitters. Analysis modelling is a critical 
component of a design phase for learning the interactions 
between different parameters and optimising critical design 
parameters throughout the implementation and analysis of 
these energy harvesting systems [2]. To understand the 
response of beams to moving loads or moving masses, 
several studies have been conducted in the past.The 
following paragraphs summarise their works.  M.A. Foda 
and Z. Abduljabbar 1997 [3] used a dynamic Green function 
approach to determine the response of a supported Bernoulli 
Euler beam of finite length subject to a moving mass 
traversing its span. The proposed method yields a 
straightforward matrix formula for the beam's deflection. 
Numerous numerical examples demonstrate the method's 
efficiency and simplicity. L. Fryba 1999 [4] summarised the 
dynamic impacts of railway bridges. Emphasis was placed 
on traffic loads and their effect on railway bridge reaction. 
The fundamental dynamic properties of railway bridges are 
detailed, as well as the effect of the most critical parameters, 
like track imperfections and vehicle speed. Aside from 
vertical impacts, the transverse effects and horizontal 
longitudinal on bridges were also considered. Wind and 
seismic effects, on the other hand, are ignored. The goal of 
this paper was to provide a thorough examination of the 

dynamic behaviour of railway bridges, to give an abundance 
of experimental results, and to illustrate effectively applied 
methods for dynamic problems.  C. Bilello et al. 2004 [5] 
studied the dynamic response of a small-scale bridge model 
under a moving mass. The study is based on the continuous 
Euler-Bernoulli beam theory. The provided problem is 
simplified to the solution of a set of linear differential 
equations of second order involving time-varying 
coefficients by expanding the unknown structural response 
in a series of the beam Eigen functions. Through a series of 
trials, the analytical solution is validated. The measured 
response was marginally larger than that predicted 
analytically, and in the speed range examined, there was no 
discernible difference between moving mass and moving 
force solutions. S.H. Bakhy et al. 2021 [6] studied the free 
vibration analysis of sandwich beams made of functionally 
graded materials (FGMs) with various core metals and wall 
thicknesses. Based on the Euler-Bernoulli beam theory, a 
mathematical formulation has been developed for a 
sandwich beam that consists of an FG core sandwiched 
between two layers of ceramic and metal, with 
homogeneous material making up the face sheets. It became 
clear that the ratio, index of volume fraction, and face FGM 
core ingredients all significantly impacted the dynamic 
response, the mode forms, and the natural frequency 
characteristics.  E. Abdeddine et al 2022 [7] proposed an 
experimental investigation into how a cantilever and a 
rectangular plate manufactured using the fused filament 
fabrication process are affected by large vibration. By 
stimulating the plate at a large displacement, the structure's 
nonlinear dynamic behaviour during forced vibration is 
calculated. For the first, second, and third mode shapes., the 
relationship between frequency and amplitude vibration is 
investigated. The research of piezoelectric energy harvesting 
technology has grown in prominence. The research of 
piezoelectric energy harvesting technology has grown in 
prominence. The following paragraphs summarise some 
previous studies about it. S. F. Ali et al. 2011 [8] examined 
the potential for piezoelectric energy harvesters to be used 
as scavenging devices for energy on highway bridges. The 
model of a motorway bridge with a shifting point load is 
explored, and the piezoelectric energy harvester is modelled 
using a model with a single degree of freedom. Two distinct 
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types of harvesters have been investigated, specifically, the 
circuit for harvesting with and without an inductor. The 
energy generated by a single vehicle has been evaluated. 
Those results, combined with traffic information, can be 
utilised to determine the variance in average power and thus 
aid in the design system of energy management for a 
particular application. A. Erturk and D.J. Inman 2011 [9] 
proposed two methodologies for piezoelectric energy 
production from dynamic loading. The first is predicated on 
using a cantilevered bimorph positioned arbitrarily on a thin 
bridge that is supported. The second method contemplates 
using a thin patch of piezoceramic to cover a section of the 
bridge.  Y. Zhang and L. Deng 2014 [10] discussed 
piezoelectric energy harvesting from civil infrastructures. 
Due to their widespread use, piezoelectric cantilever-based 
harvesters are adopted. Simulated has been done for bridge-
vehicle systems in two different scenarios: with a single 
passing vehicle and with a continual flow of vehicles. 
Parametric research is done to determine the influence of 
various numerous vehicles and bridges on energy 
harvesting. The simulation outcome indicates that the power 
of energy output rises when road conditions deteriorate and 
lengths of bridge spans decrease. Additionally, this article 
investigates and discusses optimum vehicle speeds and 
energy harvester placements.  S. Senthil Murugan, P. 
Vijayakumar 2017 [11] studied the exploration of ultrasonic 
frequency for producing water mist without a pressurised 
system. Using a piezoelectric transducer, the H-bridge 
circuit has been constructed. It will function between 0 and 
3 MHz. The minimum frequency needed to generate water 
mist is approximately 2 MHz, which has been predicted 
using the established model. The results of the experiments 
have shown that water mist generation in the water reservoir 
requires a minimum of 2 MHz .K. Bendine et al. 2019 [12] 
studied a finite element model of the bridge (cantilever 
beam) for time domain analysis using Hamilton principle, 
the Kirchhoff plate assumptions, and the Newmark 
integration scheme. Considerations are made for various 
sorts of moving loads (broadband, narrow-band, constant 
and harmonic). The acquired results reflect prior findings in 
the literature: when the harvester is situated at the highest 
amplitude of the bridge's associated mode shape, the 
gathered energy is maximal. These findings are not 
confirmed when genuine moving loads are used in 
conjunction with a narrow-banded or broadband frequency 
spectrum. Z. Yang et al. 2020 [13] employed the 
perturbation of biparameters approach to address the free 
vibration damping issue for cantilever beams with 
piezoelectric, and the solution of the perturbation to the 
problem was presented. The effect of piezoelectric 

characteristics on piezoelectric cantilever beams vibrate was 
demonstrated numerically. Additionally, vibration studies 
on cantilever beams with piezoelectric, were conducted, and 
the practical results agreed well with the theoretical 
predictions. The results imply that the solution to the 
biparametric perturbation problem produced is effective in 
their study, and it may be used as a theoretical reference for 
designing piezoelectric actuators and sensors. J.X. Wang et 
al. 2022 [14] presented a multi-folded-beam piezoelectric 
energy harvester (MFB-PEH) for low-power energy 
harvesting applications in settings with low frequencies and 
low amplitude vibrations. In order to find the best design, 
the finite element technique (FEM) was first employed. 
According of the experimental findings, the improved MFB-
PEH has three resonance frequencies in the 9 to 20 Hz range 
of the surrounding frequency, which can increase the 
harvester's operational bandwidth. To capture the energy 
produced by human motion, a bundled MFB-PEH was 
finally used. Our research has demonstrated the MFB-PEH's 
suitability as a potential generator in situations with low 
frequencies and amplitudes, as well as a wide frequency 
range. Xiong C et al. 2023 [15] introduced a low-cost, 
magnet-free, bistable piezoelectric energy harvester to 
capture energy from low-frequency vibration, transform it 
into electrical energy, and lessen fatigue damage brought on 
by stress concentration. The flapping wings of seagulls 
inspired it during flight. Finite element modelling was used 
to quantitatively examine the energy harvester's greater 
performance in reducing stress concentration compared to 
the prior parabolic one employing bistable technology, with 
a maximum stress reduction of 32.34%. According to the 
testing findings, the harvester's highest open-circuit voltage 
and maximum output power were 11.5 V and 73 W, under 
ideal working circumstances. 

Much research has been conducted, but in the research, 
energy was harvested using three moving masses with three 
speeds for each of those masses, as well as studying the state 
of the beam when the moving mass exits. It also compares 
the results practically and numerically using MATLAB and 
COMSOL programs to get more accurate results.  This 
research will construct trustworthy theoretical models that 
accurately predict output piezoelectric power values, hence 
avoiding the time-consuming procedure of fabricating a 
structure, testing setup and completing time-consuming 
measurements. Parametric research will also be undertaken 
to enhance the power collecting process; PZT length, 
resistive load and beam dimensions will be examined in 
order to identify how they affect the power output and to 
optimise the PZT's possible output power coupled to a 
supported beam. 
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2. Theoretical background 
 

The Dynamic equilibrium equation will initially be 
displayed. Then a statement of how the mathematical 
equations will be simplified and solved. 

 
2.1. Dynamic equilibrium equation 
 

Consider a moving mass M move at speed 𝑣𝑣 connected to 
a Euler-Bernoulli beam with length L, as shown in Figure 1. 
It is supposed that the beam and moving mass are linked and 
that the moving object's transverse vibration in relation to 
the beam is insignificant. When analysing a moving mass, it 
is necessary to consider its inertial effects. As a result, 
energy techniques should be used to determine the governing 
equation. Substituting x in y(x,t) with the value of x(t) would 
yield the displacements of the beam and the moving mass 
relative to the mass's position, expressed clearly in terms of 
time. The physical function that depicts the projections of 
mass-related displacements is denoted by [16]. 
 

 
 

Fig. 1. Diagram of a beam with moving mass 
 
𝑌𝑌�𝑡𝑡� � 𝑦𝑦�𝑋𝑋, 𝑡𝑡� (1) 
 

The system's potential and kinematical energy at time t 
are applied to use Hamilton's principle and derive the 
governing equation. As a result, the equation of dynamic 
equilibrium for a moving mass load is regarded as [9,16]: 
 

𝐸𝐸𝐸𝐸 �����,��
��� � ��𝐸𝐸 �

����,��
��� �� � �� ����,��

�� � 𝑚𝑚 �����,��
���

   � 𝛿𝛿�𝑥𝑥 � 𝑣𝑣𝑡𝑡�𝑃𝑃�𝑥𝑥, 𝑡𝑡�
 (2) 

 

where the mass of beam 𝑚𝑚 � � 𝐴𝐴,  represented the bending 
stiffness, equivalent coefficient of strain rate damping, 
viscous air damping coefficient and dirac delta function 
respectively. Assuming that the mass has a vertical 
displacement y(x,t) , the applying force 𝑃𝑃�𝑥𝑥, 𝑡𝑡� on the beam 
could be written as [17]: 
 

𝑃𝑃�𝑥𝑥, 𝑡𝑡� � �� �� �����,��
���  (3) 

The following could be deduced from the assumption of 
no separation [17]: 
 

𝑃𝑃�𝑥𝑥, 𝑡𝑡� � �� �� ������,��
��� � 2𝑣𝑣 �����,��

�� ��  � 𝑣𝑣� �����,��
��� � (4) 

 

In Eq.( 4), Items in parentheses  have the following 
physical significance: 𝜕𝜕�𝑦𝑦�𝑥𝑥, 𝑡𝑡� 𝜕𝜕𝑡𝑡�  represents vertical 
acceleration caused by beam vibration; 2𝑣𝑣 𝜕𝜕�𝑦𝑦�𝑥𝑥, 𝑡𝑡� 𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡  
represents vertical acceleration caused by a change in the 
vertical speed of the beam caused by load movement; and 
𝜕𝜕�𝑦𝑦�𝑥𝑥, 𝑡𝑡� 𝜕𝜕𝑥𝑥� ) represents centrifugal acceleration caused 
by load moving along the vertical curve caused by beam 
vibration [17,18]. 

It is important to notice that x is set exclusively for 
locations on beam, and hence 0 ≤ x ≤ L valid. It is 
accomplished using the delta function that appears on the 
right side of Eq. (2); it ensures that only the beam is affected 
by the weight that is moving across it. A proper set of initial 
and boundary conditions must be used in conjunction with 
Eq. (2). Because Eq. (2) is indeed a (PDE), a solution of the 
following form is assumed [16]: 

 

𝑦𝑦�𝑥𝑥, 𝑡𝑡� � ∑  ���� 𝜙𝜙��𝑥𝑥�ɳ ��𝑡𝑡� (5) 
 

where 𝜙𝜙�(x) denotes the beam's rth mode shape function and 
the rth modal displacement of the beam, represented by the 
symbol ɳ�(t). There are unlimited modes for the exact beam 
solution, implying that the overall solution would require an 
endless series; this series is represented by Eq. (5), N-terms 
truncated. Where 𝜙𝜙�(x), the mode shapes are time-
independent and fulfil the boundary conditions. 
Nonetheless, the modal displacements, ɳ�(t), are spatially 
independent and satisfy the PDE's initial conditions. For 
supported uniform beams, the mass normalised mode shapes 
are given by sine functions [19]; therefore, 
 

𝜙𝜙��𝑥𝑥� � �2/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 �𝑟𝑟�𝑥𝑥/𝑚𝑚� (6) 
 

Which satisfies the orthogonality conditions: 
 

�  �� 𝜙𝜙��𝑥𝑥�𝑚𝑚𝜙𝜙��𝑥𝑥�d𝑥𝑥 � 𝛿𝛿��  ,�  �� 𝜙𝜙��𝑥𝑥�𝐸𝐸𝐸𝐸 �
������
��� �𝑥𝑥 �

𝜔𝜔��𝛿𝛿�� (7) 
 

where 𝛿𝛿��  is the Kronecker delta, defined as one for s = r 
and zero for s ≠ r, and 𝜔𝜔� is the undamped natural frequency 
of the beam's rth mode [10]. There is also the exciting 
frequency 𝜔𝜔 [4]. 
 

𝜔𝜔� � ��𝑟𝑟��𝐸𝐸𝐸𝐸/𝑚𝑚𝑚𝑚� (8.a) 
 

𝜔𝜔 � �� �
�  (8.b) 

2.  Theoretical background

2.1.  Dynamic equilibrium equation
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The moving mass’s critical velocity at which beam 
resonance [4]: 
 

𝑣𝑣� � �
� �𝐸𝐸𝐸𝐸/𝑚𝑚 � � ��

�  (9) 
 

Eq. (2) is solved on the basis of the following 
assumptions [9]: 
i) The assumptions underlying the structure are: 

a) Small structural deformations, 
b) Material with linear elastic properties, 
c) Initially straight beams, 

ii) The effects of shear deformation as well as rotating 
inertia, are ignored (Euler-Bernoulli beam). As a result, 
the beam has a small height-to-length ratio. 

iii) The mass goes from left to right at a constant speed. 
 
2.2. Differential equation of motion  
discretisation  
 

In order to simplify the analyses of motion differential 
equations, the dimensionless high order differential equation 
(2) is discretised and decreased order to a lower order 
differential equation via Ritz-Galerkin method [17]. 
Supposing displacement 𝑦𝑦 as a function of variables 𝑥𝑥 and 𝑡𝑡, 
and its Ritz-Galerkin expression will be as in Eq. (5) that 
changed into matrix type, as follows: 
 

𝜙𝜙 � �
𝜙𝜙�:
:𝜙𝜙�
�  , ɳ � �

ɳ �:
:ɳ �
� , then 

 
𝑦𝑦�𝑥𝑥, 𝑡𝑡� � 𝜙𝜙�ɳ � ɳ�𝜙𝜙 (10) 
 

Eq. (5) is substituted into Eq. (2), the following 
conclusion is reached: 
 
𝐸𝐸𝐸𝐸𝜙𝜙�����ɳ � ��𝐸𝐸𝜙𝜙�����ɳ� � ��𝜙𝜙�ɳ� � 𝑚𝑚𝜙𝜙�ɳ�
 � 𝑀𝑀� � � 𝜙𝜙�ɳ� � 2𝑣𝑣𝜙𝜙��ɳ� � 𝑣𝑣�𝜙𝜙���ɳ �𝛿𝛿�𝑥𝑥 � 𝑣𝑣𝑡𝑡� (11) 

 
By multiplying both sides of the Eq. (11) by 𝜙𝜙, 
 
𝐸𝐸𝐸𝐸𝜙𝜙𝜙𝜙�����ɳ � ��𝐸𝐸𝜙𝜙𝜙𝜙�����ɳ� � ��𝜙𝜙𝜙𝜙�ɳ� � 𝑚𝑚𝜙𝜙𝜙𝜙�ɳ� �
𝑀𝑀�𝜙𝜙 � � 𝜙𝜙𝜙𝜙�ɳ� � 2𝑣𝑣𝜙𝜙𝜙𝜙��ɳ� � 𝑣𝑣�𝜙𝜙𝜙𝜙���ɳ �𝛿𝛿�𝑥𝑥 � 𝑣𝑣𝑡𝑡� (12) 
 

Integrated throughout the 0–L spatial domain, and 
substitutions based on orthogonality of trigonometric 
function: 

 

� � �
� 𝐸𝐸𝐸𝐸𝜙𝜙𝜙𝜙�����ɳ � ��𝐸𝐸𝜙𝜙𝜙𝜙�����ɳ� � ��𝜙𝜙𝜙𝜙�ɳ� � 𝑚𝑚𝜙𝜙𝜙𝜙�ɳ� �𝑑𝑑𝑥𝑥 �
�  �� 𝑀𝑀�𝜙𝜙 � � 𝜙𝜙𝜙𝜙�ɳ� � 2𝑣𝑣𝜙𝜙𝜙𝜙��ɳ� � 𝑣𝑣�𝜙𝜙𝜙𝜙���ɳ �𝛿𝛿�𝑥𝑥 � 𝑣𝑣𝑡𝑡�𝑑𝑑𝑥𝑥 �13� 

It should be noted that the following Dirac delta function 
𝛿𝛿�𝑥𝑥� property is used to get the right-hand side of Eq. (13) 
[21]. 

 

�  �� 𝑓𝑓�𝑥𝑥�𝛿𝛿�𝑥𝑥 � 𝑋𝑋�𝑑𝑑𝑥𝑥 � 𝑓𝑓�𝑋𝑋�       �� � X � �� (14) 
 
For first mode: 
 
𝑦𝑦�𝑥𝑥, 𝑡𝑡� � 𝜙𝜙��𝑥𝑥�ɳ ��𝑡𝑡� (15) 
 

The mass normalised mode shapes are given in Eq. (6) 
 

For r=1 �𝜙𝜙��𝑥𝑥� � �2/𝑚𝑚𝑚𝑚 sin ��𝑥𝑥/𝑚𝑚�� (16) 
 

Supposing 𝜙𝜙 � 𝜙𝜙� , ɳ � ɳ � , Eq. (13) with rearrange for 
the equation will be: 

 

𝑀𝑀��
��ɳ���
��� � 𝐶𝐶�� �ɳ����� � 𝐾𝐾�� ɳ�𝑡𝑡� �  

� 𝑀𝑀��2/𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠 ��𝑣𝑣𝑡𝑡/𝑚𝑚� (17) 
 
where: 
 

𝑀𝑀�� � 1 � ��
�� sin� ����� �

𝐶𝐶�� � 2𝜁𝜁�𝜔𝜔� � ��
�� �

��
� � sin �2 ���

� �
𝐾𝐾�� � 𝜔𝜔�� � ��

�� �
��
� �

� sin� ����� �
 (18) 

 

2𝜁𝜁�𝜔𝜔� � ������
�� � ��

� (19) 
 

𝜔𝜔� � ���𝐸𝐸𝐸𝐸/𝑚𝑚𝑚𝑚�  (20) 
 
where 𝜁𝜁� is the modal mechanical damping ratio and 𝜔𝜔� is 
the supported beam's first natural frequency. Thus, the 
damping ratio 𝜁𝜁� contains both viscous air and strain-rate 
damping effects and can be stated as 𝜁𝜁� � 𝜁𝜁�� � 𝜁𝜁�� 
where 𝜁𝜁�� � ��

����  and 𝜁𝜁�� � �����
��� , respectively. The strain-

rate damping coefficient seems to be proportional to the 
stiffness of the structure, but the damping coefficient of 
viscous air is proportionate to the mass per unit length, as 
shown in Eq. (19) [9]. 
 
2.3. Thin piezoceramic patch   
 

The section discusses a strategy for instances with 
extremely low oscillation frequency. The slender bridge 
depicted in Fig. 1 has a piezoceramic patch covering the 
region x��  � x �  x��  for generating power from the 
vibrations caused by the moving mass. is the given section 

2.2.  Differential equation of motion  
discretisation

2.3.  Thin piezoceramic patch
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aims to establish a relationship between the beam's surface 
strain and the piezoceramic's voltage output. Equation (2) 
governs the beam's dynamics, and it is assumed that the 
piezoelectric energy generation and patch have a negligible 
effect on the beam's dynamics [9]. 

To derive the equations that govern the electrical 
behaviour, the supported beam (Fig. 1) with a single layer 
piezoelectric connected to the external resistance 𝑅𝑅� was 
considered     In the case of one-dimensional strain variations, 
the electric displacement component in the patch's thickness 
direction is [9]. 
 

𝐷𝐷� � �̅�𝑒��𝑆𝑆� � 𝜀𝜀�̅�� 𝐸𝐸�   (21) 
 
Equation (22) depicts the voltage created throughout the 
load resistance by the piezoelectric patch [9]. 
 

𝐶𝐶� �����
�� � ����

�� � ��̅�𝑒��ℎ��𝑏𝑏� �  ���
���

�����,��
��� �� 𝑑𝑑𝑑𝑑 (22) 

 
where: 
 

 𝐶𝐶� � 𝜀𝜀�̅�� 𝑏𝑏��𝑑𝑑�� � 𝑑𝑑���/ℎ�  (23) 
 

ℎ�� � �� ��
�   (24) 

 

where 𝐶𝐶�, �̅�𝑒��,  𝜀𝜀�̅�� ,  𝑏𝑏�, ℎ�, ℎ��, ℎ represented piezoceramic 
capacitance, piezoelectric constant, Permittivity constant, 
the width of piezoceramic, the thickness of piezoceramic, 
the distance with the neutral axis and beam’s thickness 
respectively.  

The solution from Eq. (22) when the beam response in 
Eq. (5) is substituted: 
 
�����
�� � ����

���� � ∑ 𝜓𝜓�����
������
��  (25) 

 
where: 
 

𝜓𝜓� � � �̅�������
�� �  ���

���
�������
��� 𝑑𝑑𝑑𝑑 �  

� � �̅�������
��

������
�� �

�����

�����
 (26) 

 
For first mode Eq. (25) will be: 
 
�����
�� � ����

���� � 𝜓𝜓� ��������  (27) 
 

where: 
 

𝜓𝜓� � � �̅�������
�� �  ���

���
�������
��� 𝑑𝑑𝑑𝑑 �  

� � �̅�������
��

������
�� �

�����

�����
 (28) 

������
�� � �2𝜋𝜋�/𝑚𝑚𝑚𝑚� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋𝑑𝑑/𝑚𝑚� (29) 

 
2.4. Determination of beam deflection and  induced 
voltage of the PZT patch 
 

To obtain the PZT patch voltage, equations (22) and (25) 
should be solved. The problem was solved numerically. As 
a result, the system is decomposed into a series of 
differential first-order equations, and the state variables in 
the time domain are numerically solved. First vibration 
mode's state variables are regarded as: 
 

𝑑𝑑��𝑡𝑡� � ���𝑡𝑡�,  𝑑𝑑��𝑡𝑡� � ������
�� ,  𝑑𝑑��𝑡𝑡� � ��𝑡𝑡� (30) 

 

Both modal displacement and velocity are represented by 
𝑑𝑑��𝑡𝑡� and 𝑑𝑑��𝑡𝑡�, respectively. At the same time, the induced 
voltage is 𝑑𝑑��𝑡𝑡� . Equations (17) and (27) can indeed be 
described as a number of first-order equations differential: 

 

�
𝑑𝑑��𝑑𝑑��𝑑𝑑��
� �

⎩⎪
⎨
⎪⎧

𝑑𝑑�
� �����

���
� �����

���
� ��

���
� �
�� 𝑐𝑐𝑠𝑠𝑠𝑠 ����� �

� ��
���� � 𝜓𝜓�𝑑𝑑� ⎭⎪

⎬
⎪⎫

 (31) 

 
In the study, MATLAB R2017b is utilised to solve the 

problem of finding beam response and induced voltage of 
the piezoelectric patch. The key computer software was 
developed using modern higher-order Eq. (31) and were 
solved using the Runge-Kutta method in MATLAB. The 
initial conditions have been set to zero for all equations. 

For the first two modes: 
 

𝑑𝑑��𝑡𝑡� � ���𝑡𝑡�  ,  𝑑𝑑��𝑡𝑡� � ������
��   , 𝑑𝑑��𝑡𝑡� � ���𝑡𝑡�  ,  

 𝑑𝑑��𝑡𝑡� � ������
��   , 𝑑𝑑��𝑡𝑡� � ��𝑡𝑡� (32) 

 

The power is obtained using root mean square of voltage 
[9]. 
 

𝑝𝑝��� � �����
��   (33) 

 
 

3. Experimental rig 
 

Experiments are conducted using a bridge energy 
harvesting simulator system. This rig is used to simulate 
bridges of a small size. The rig consists of three main parts: 
the foundation and the two Substrates. It was constructed 
from (122 cm x 43 cm x 70 cm) rectangular section iron table 
and two (13 cm x 13 cm x 10 cm) substrates of a beam 
supported as shown in Figure 2. 

3.  Experimental rig

2.4.  Determination of beam deflection and  
induced voltage of the PZT patch
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The two substrates were designed to fulfil the 
requirements for supported conditions. The third part is the 
sliding stand and the ramp, where the height of the stand and 
the angle of the plate arc can be changed to control the 
acceleration of the moving mass. Figure 3 illustrates the data 
acquisition operations for experimental tests. As the mass 
moves across the beam, its midpoint displacement is 
measured using a laser displacement sensor. The sensor's 
signal is routed straight to a Data Acquisition System (DAQ) 
and then processed on a computer.  
 
Experimental procedure  

The experiment determines the validity and accuracy of 
the supported beam's analytical and FEM power models. 
The test rig is depicted in Figure 2. The stainless steel beam 
utilised in the experiment measures 0.98 m in total length. 
NI USB-4431 acquisition systems are used in conjunction 
with the NI-LabVIEW software to monitor -or and analyse 
the acquired signals. A piezoelectric material is stuck on the 
beam at the mid-span. The PZT operates as a generator, 
transforming the mechanical strains generated by the 
vibrations of the beam to an electrical charge. To compute  
 

 

 
 
Fig. 2. The designed Rig for experimental assessment,  
1) DAQ-4431; 2) Microcontroller; 3) Beam; 4) Laser 
displacement sensor; 5) IR Sensor (A-At the beginning of 
beam /B- At the end of beam; 6) Weight Scale; 7) Ramp and; 
8) Stand 

power, the voltage is passed through a resistor. The 
resistance is the DAQ impedance for a beam excited by a 
moving mass function. DAQ is used to determine the voltage 
across the resistor.  The deflection is measured by using a 
laser displacement sensor. The laser sensor is positioned 
perpendicular to the midpoint of the beam length and in 
focus on the beam 4 mm from its edge. The beam surface is 
cleaned well to ensure that it is free of impurities, especially 
at both places, the first is where the laser falls to create a 
highly reflecting surface for the laser and the second is the 
place where the piezoelectric patch is stuck. The laser sensor 
measures and transforms the signal to voltage. For this 
application, the conversion factor is ±5 V (1 mm/V). The 
damping ratio and the natural frequency of the first vibration 
mode were also calculated based on the displacement signal, 
as explained in the next section. 

In summary, the moving mass is placed on the ramp to 
gain  acceleration and thus moves at a certain speed 
according to its position in the ramp. After the moving mass 
enters the beam, its speed is measured by the four sensors, 
two of them placed at the beginning and the other at the end 
of the beam with a distance of 20 cm between every two 
sensors was kept. From the moment the moving mass enters  
 

 

 
 

Fig. 3. Diagram for connecting instruments of the 
experimental rig 
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the beam until it exits, the deflection of the centre of the  
beam and the resulting voltage from PZT are measured as 
shown in Figure 3. Different geometries of piezoelectric 
produced by the company Mide, the type whose trade name 
is PPA 1001 was used because it a single layer of PZT 
material that is well-suited for sensing applications and 
energy harvesting and its size is compatible with the beam. 
Moreover, this harvester is sturdy and fairly cheap. The PPA 
1001 model is an imorphous sheet made up of a single layer 
of material PZT 5J piezoelectric layer surrounded by four 
other layers of structural material in the successions: 
polymide, copper, PZT 5J, AISI 304 steel and polyester. 

 
 

4. Results and discussion 
 
4.1. Validation of the proposed model  
 

Using MATLAB R2017b programming, the dynamic 
deflection of the supported beam under the moving mass is 
analysed. The results are compared with the approach used 
for the supported beam used in Cristiano Bilello et al. [5] 
experimental work. Bilello et al. [6] has developed a scale-
model to experimentally examine the response of moving 
mass-loaded beam. The scale model used in [5] consists of 
6061 aluminium beam with L=1053 mm, EI=162.6 Nm2 and 
m=1.847 kg/m. The moving mass is 0.5047 kg.  

 

 
 
Fig. 4. History of beam deflection at point x=7L/16 for 
moving mass velocity: 2.1083 m/s 
 

Figure 4 shows the dynamic deflection history of point 
x=7L/16 for speed 2.1083 m/s. It also shows excellent 
agreement between the present study and [5] in terms of 

trend and maximum deflection. The maximum displacement 
for the experimental [5] and the current investigation is 
0.787mm and 0.796 mm, respectively. Thus, the maximum 
absolute error is 1.12%. The found responses that appear to 
oscillate following the peak are particularly intriguing. 
According to the experimental result mentioned in [5], this 
is most likely generated by out-of-plane oscillations of the 
moving mass brought on by abnormalities in the rolling 
surface or guide rails. 

 
4.2. Dynamic deflection results  

 
The results are divided into three parts. Firstly, compare 

one and first two modes of beam’s theoretical displacement, 
then show the effect of piezoelectric coupling on beam 
response. Finally, determine the dynamic response of the 
beam when subjected to a moving mass in various cases. By 
solving a set of ordinary differential equations in equation 
(31) using ode45 code in MATLAB and based on the beam 
specifications which are listed in Table 1, graphs in Figure 5 
demonstrate dynamic deflection for the fundamental mode 
and first two modes of the beam vibration has been obtained. 
As there was a small discrepancy in the results, it was 
decided to employ only one mode in subsequent 
calculations. 

 
Table 1. 
The value of parameters employed in the theoretical 
formulation as a result of the experimental setting 

Parameter Numerical value 
L 0.98 m 
m 1.17 �kg/m� 
I 1.125×10���m� 

  𝑅𝑅� 135 kΩ 
𝑏𝑏� 0.0208 m 
ℎ�� 0.001575 m 
𝐶𝐶� 120.2 nF 
𝐿𝐿��� 0.467 m 
𝐿𝐿��� 0.513 m 
𝜀𝜀‾���   18.849  nF/m 
𝜁𝜁� 0.0015 
�̅�𝑒�� -17.08 C/m� 

 
It is well known that beam vibration causes a voltage to 

be generated in the piezoelectric patch. In general, the 
piezoelectric patch reacts to the vibration of the beam. A test 
was conducted to demonstrate the piezoelectric coupling 
effect's negligibility on the beam deflection. The 
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piezoelectric patch was mounted to the beam, and then a 
moving mass moved across it while the piezoelectric was in 
short-circuit mode and open-circuit mode. As illustrated in 
Figure 6, the insignificant difference between these two 
trials confirms the piezoelectric coupling effect's 
negligibility. 

 

 
 
Fig. 5. Comparing the theoretical displacement of the 
midpoint of the beam under 35.6 g moving mass with 2.4 
m/s speed 
 

 
 
Fig. 6. Comparison of the beam response of piezoelectric 
patch in the short and open circuit modes for 79.4 gr moving 
mass with 1.6 m/s speed 

 
The theoretical and experimental dynamic deflection 

results have been obtained when a constant moving mass 
traveling at a constant speed crossing from left to right over 
the beam span. The dynamic analysis of the beam is 
performed with various moving mass weights and speeds. 
The midpoint deflection behaviour of a 0.98 m span beam is 

illustrated in Figure 7 for various moving mass speeds and 
weights.  

 
a) 

 
 

b) 

 
 

c) 

 
 
Fig. 7. Comparing the experimental and theoretical 
displacement of the midpoint of the beam for a) v=1.6 m/s, 
b) v=2 m/s and c) v=2.4 m/s 
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The deflection curves for moving masses travelling at 
speeds of 1.6 m/s, 2 m/s, and 2.4 m/s are presented. As can 
be seen, the highest deflection occurs at the beam's mid-span 
point and increases as the moving mass's speed increases. At 
1.6 m/s speed, the deflection curve fluctuates more and has 
a smaller amplitude of variability, whereas at 2.4 m/s, the 
fluctuation is less, but the amplitude is greater; the reason is 
due to the resonance frequencies of the coupled dynamic 
system moving beam-moving mass. Increasing the speed 
leads to a larger oscillation frequency. Additionally, it is 
since when speed increases, the energy level of the beam 
increases. 

This variable is altered to adequately examine the weight 
effect while the remaining values remain constant. As 
illustrated in Figure 7, when the weight is raised in the 
following proportions 35.61 gr, 65.81 gr, and 79.41 gr, the 
maximum displacement gradually increases in proportion 
with the weight. The behaviour is expected as the global load 
vector and, subsequently, the displacements, accelerations, 
and speeds are proportional to the weight according to the 
linear dynamic system's equations of motion. The 
displacements of the beam mid-span point are determined 
using a theoretical approach to mass movement that is 
generally consistent with those observed experimentally. 

As seen from Figure 7, the dynamic deflection caused by 
a moving mass can be substantially greater than that caused 
by stationary mass, as the calculated deflection is the result 
of two components: static and dynamic deflection caused by 
moving mass. 

The maximum displacement of a traversing moving mass 
does not necessarily occur when the moving mass is at the 
beam's mid-span region. This phenomenon is caused by both 
the traversing load's velocity and the reflected waves from 
the beam's boundary. Figure 7a shows that the maximum 
deflection occurs when the moving mass travels a distance 
of 0.415 m from the length of the beam, specifically at the 
time 0.254 s. That is, we have obtained the maximum 
deflection of the mid-span of the beam before the mass 
reaches the middle of the beam. 

In Figure 7, small discrepancies are observed between 
MATLAB and COMSOL results (particularly in the time 
range [0.3-0.4]) for all three plots because in MATLAB, a 
one-dimensional piezoelectric model was used. It was 
solved by ODE45, in contrast to the modelling by 
COMSOL, where a three-dimensional form of the linear 
piezoelectric constitutive equations was taken. In addition, a 
convergence study was performed in COMSOL to 
determine the appropriate finite element mesh to be used in 
the structural analysis of the energy harvesting model. 
Meshes were developed, and with decreasing in element 

size, it was noticed that the fundamental natural frequency 
stabilises at optimised square element size equal to "2.8" mm 
and a number of elements equal to 12772. Therefore, 
COMSOL results show little variance compared to 
MATLAB results. 
 
4.3. Piezoelectric energy harvesting results  
 

Next to be obtained and compared are the piezoelectric 
voltages and power. Figures 8, 9 and 10 display the 
experimental and theoretical open circuit voltage signals 
results with time, based on the piezoelectric patch 
specifications which listed in Table 1. The results reveal that 
increasing the mass in the following proportions 35.61 gr, 
65.81 gr, and 79.41 gr increases the piezoelectric power and 
voltage at a constant mass speed. 

Additionally, when the mass value remains constant, the 
output of the piezoelectric generator is enhanced by 
increasing the speed of the moving mass. This is mostly due 
to the fact that raising the weight of the travelling mass and 
speed values will increase the beam midpoint deflection and 
strain. Also, three different moving mass speeds ranging 
from 1.6 to 2.4 m/s with an interval of 0.4 m/s are adopted 
for each mass in this study.  

It is to be noted that excitation frequency rises as the 
speed of the moving mass increases, yet the fundamental 
frequency of the beam remains constant. In Figures 8, 9 and 
10 all findings are presented for the period during which the 
mass is on the beam, i.e., from the time the moving mass 
comes on the beam until it entirely exits. 

The reason why the voltage curve fluctuates more and 
has a lower amplitude of variability at 1.6 m/s speed 
compared to 2.4 m/s is because of the resonance frequencies 
of the coupled dynamic system moving beam-moving mass. 
A higher oscillation frequency results from increased speed. 
Additionally, this is because when speed rises, the energy 
level of the beam rises, which increases the voltage and 
therefore increases amount of energy harvested. 

Table 2 compares the average harvested power obtained 
experimentally and theoretically from Figures 8, 9, and 10, 
demonstrating the impacts of increasing the speed and 
moving mass. Thus, one can increase the amount of energy 
harvested by increasing the mass or speed of the moving 
mass. The power shown in Table 2 is calculated using  
the root mean square of the voltage in accordance with  
Eq (33). 

The Table also shows an acceptable percentage of error 
when comparing experimental and theoretical results. 
However, the percentage of error is often lower when 
comparing COMSEL results with experimental ones, and 

4.3.  Piezoelectric energy harvesting results
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that is because the accuracy of the COMSEL for the reasons 
that were previously explained. For example, for 65.81 gr 
moving mass with speed 2m/s, the percentage of error in 
MATLAB is 4.61%, while in COMSOL is 2.28%. 
 
a) 

 
b) 

 
c) 

 
 
Fig. 8. Experimental and theoretical comparisons of induced 
open circuit voltage with 1.6m/s for a) 35.61 gr , b) 65.81 gr 
and c) 79.41 gr 

 
 

 
 

 
 
Fig. 9 Experimental and theoretical comparisons of induced 
open circuit voltage with 2 m/s for: a) 35.61 gr, b) 65.81 gr 
and c) 79.41 gr 
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Fig. 10. Experimental and theoretical comparisons of induced open circuit voltage with 2.4 m/s for: a) 35.61 gr,  
b) 65.81 gr and c) 79.41 gr 

 
Table 2.  
Average harvested power value derived from the data supplied in Figures 8, 9 and 10. 

Mass, gr Speed, m/s Experiment, µW Matlab, µW Error, % Comsol, µW Error, % 
35.61 

1.6 
0.0156 0.0173 11.025 0.0165 5.38 

65.81 0.0532 0.0589 10.833 0.0562 5.656 
79.41 0.0759 0.0854 12.608 0.0798 5.174 
35.61 

2 
0.0250 0.0265 5.8841 0.0256 2.6108 

65.81 0.0869 0.0909 4.6191 0.0889 2.2832 
79.41 0.1305 0.1327 1.7051 0.1331 1.9954 
35.61 

2.4 
0.0296 0.0325 10.082 0.0313 6.0566 

65.81 0.1051 0.1093 3.99 0.1083 3.1 
79.41 0.1434 0.1583 10.386 0.1537 7.135 
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Table 3.  
Values of fundamental natural frequency with damping ratio 

Mass, gr Speed, m/s 
Fundamental natural frequency, Hz 

Damping ratio, % 
Experimental Analytical COMSOL 

35.61 
2.4 

7.204 
7.261 7.264 

0.1547 
65.81 7.205 0.1426 
79.41 7.209 0.2027 

 
4.4 Effect of the damping ratio  
 

In this part, the state of the simply supported beam is 
studied after the exciting force acting on it is removed as 
seen in Figure 11. The damping ratio 𝜁𝜁� for the first 
modevibration was calculated from the experimental results 
of the displacement-time diagram by the method of 
logarithmic decrement.  

Table 3 shows the fundamental natural frequency, which 
calculated analytically, numerically and experimentally. 
Three moving masses with the speed of 2.4 m/s are used 
each time, the fundamental frequency and damping ratio  
are measured. The result determined using theoretical 
approaches are generally consistent with those observed 
experimentally. The vertical dotted lines in Figure 11 denote 
the point at which the moving mass exits the beam. After this 
point, the beam remains vibrating at its natural frequency for 
period of time. 
 

4.5 Optimisation of variables   
 

This section examines numerous variables 
parametrically in order to identify how they affect the power 
output and to optimize the PZT's possible output power 
coupled to a beam. The parametric investigation will be 
based on the PZT and beam system described previously. 

The investigation will look at the length of the PZT and 
the resistive load, as well as the length, width and thickness 
of the beam, will be evaluated and optimised. Finally, the 
generated power will be estimated using those optimal 
values. All results were calculated theoretically using an 
analytical model solved by MATLAB programme.   

 
Load resistance 

The output power for various resistive load (R) values 
may be observed in Figure 12. 

Three different moving mass speeds 1.6 m/s, 2 m/s and 
2.4 m/s are adopted for each of mass in this study and 
resistive load ranging 0:30:10000 KΩ where the power 
output is calculated at each electrical load resistance.  
 

a) 

 
b) 

 
c) 

 
 
Fig. 11. Time response of the beam at location L/2 and 
moving mass speed, v= 2.4 m/s for: a) M = 35.61 gr,  
b) M = 65.81 gr and c) M = 79.41 gr 
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a) 

 
 
b) 

 
 
c) 

 
 
Fig. 12. Harvested power in theory at varying load 
resistances (R): a) M = 35.61 gr, b) M = 65.81 gr and  
c) M = 79.41 gr 
 
The optimum resistive load that maximises harvested power 
can be determined from the Figure 12, for example, with  
M = 79.41 gr and v = 2.4 m/s, the optimum power is 0.2788 
µW at R = 0.63 MΩ. As illustrated in Figure 12, as the 

moving mass speed increases, the optimal resistive load 
(𝑅𝑅���) decreases. Additionally, as the moving mass 
increases, the harvested power increases. 
 
PZT length  

The PZT length L� is the next variable that is optimized. 
A study is conducted to determine the best length for 
generating the maximum power. The PZT will begin with a 
length, L�, of 0.01 m and will be raised by 0.01 m until it 
completely fills the beam's length. The length of the PZT is 
plotted against the output power in Figure 13. 
 

 
 
Fig. 13. Output power as a function of the PZT length for 
moving mass speed 1.6 m/s 
 

In the case of PZT length,larger is not always better. 
Maximum power is generated at an optimum length of  
L�  = 0.63 m, or approximately When the piezoelectric patch 
covers more than half of the beam length. By increasing the 
PZT surface area thirteen folds, from 0.046 m to 0.63 m, the 
power output is increased sixteen folds. A trade-off must be 
made between an increase in the amount of prospective 
power produced and an increase in the cost of the PZT.  
Table 4 shows that capacitance increases when increases L�. 
 
Table 4. 
Capacitance and power as function of the PZT length   

Lp, m Cp, nF Power, μW 
35.61, gr 65.81, gr 79.41, gr 

0.04 105 0.0137 0.0464 0.0673 
0.1 261 0.0577 0.1956 0.2832 
0.3 784 0.2207 0.7483 1.0848 

0.63 1650 0.319 1.0844 1.5746 
0.9 2350 0.2722 0.9266 1.3466 

0.98 2560 0.246 0.8377 1.2175 
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a) 

 
 

b) 

 
 

c) 

 
 
Fig. 14. Resonance frequency and output power as a 
function of the beam's dimensions a) beam length, b) beam 
thickness, c) beam width; for moving mass 35.61 gr and 
move at 1.6 m/s 
 

After a given length of PZT is utilized, it begins to 
impact the overall parameters of the beam system, affecting 
the natural frequencies, effective cross-section, and Young’s 
modulus. This will have a detrimental effect, reducing strain 
affecting the piezoelectric patch, beam deflections, and 
overall power output. 

Dimensions of beam  
This study demonstrated how the length, thickness, and 

width of the simply supported beam affect the resonant 
frequencies of the beam structure and piezoelectric energy 
harvesting. As illustrated in Figure 14a, when the thickness 
and width of the supported beam are fixed, the resonance 
frequency decreases as the length of the simply supported 
beam increases.  

Moreover, it may compromise the beam's mechanical 
integrity by going to cause fractures as a result of the 
increased larger deflections and mass. Also, longer beam 
increases the amount of energy produced; increasing the 
length of the beam has an effect on the resonant frequency 
and the excitation frequency, but its effect on the natural 
frequency is greater, and therefore, there will be a 
convergence between the two frequencies, which makes the 
harvester produce higher energy whenever it vibrates at a 
frequency close to the resonant frequency. In addition, 
increasing the beam length leads to an increase in the 
maximum deflection. 

The beam thickness significantly affects the frequency 
of the simply supported beam. Figure 14b indicates that the 
frequency is directly proportional to the beam thickness. 
As the thickness increases, so does the stiffness, which 
increases the frequency; also the increase led to a decrease 
of the power produced first because the strain on the 
piezoelectric will decrease, and secondly, the resonance 
frequency increases and the excitation frequency is 
constant. 

A wider beam reduces output power, as illustrated in 
Figure 14c, due to the increased area and mass of the beam 
but at the same time, that led to reducing the strain; however, 
the resonance frequency is still constant as long as the 
structure is a simply supported beam. 
 
 
5 Conclusions  
 

An electromechanical analytical model for predicting 
power generation from PZT by an externally excited force 
represented by a moving mass on supported beam structures 
has been developed and tested. Several design parameters 
that affect energy harvesting are being studied in terms of 
(resistive load, PZT length, as well as the length, thickness, 
and width of the beam). 

The theoretical approach allows the simulation of the 
behaviour of these harvesters and can provide useful 
information regarding mechanical aspects. The simulations 
lead to important applications in the design of these devices 
and the optimisation of their functional behaviour. 
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The results are mainly obtained using the analysis 
method by solving the PDE obtained numerically by 
MATLAB and then compared to the FEM (numeric method) 
using COMSOL. The results found by the experiment give 
good agreement when compared with numerical results. 

Some of the conclusions reached through the results of 
the research are as follows: 
1. Analytical and finite element electromechanical models 

have been developed to forecast energy production from 
a vibrating of supported beam.  

2. The analytical model estimates the properties of 
piezoelectric elements using the Euler-Bernoulli 
method. The models accurately anticipate the 
displacement, voltage, and energy generated by an 
excited beam by a moving mass. The results of these 
two models show an agreement with experimental 
measurements carried out. 

3. The maximum dynamic deflection occurs in the half 
length of the beam regardless of the moving mass's 
weight or speed, which results in the highest power 
output when the piezoelectric is positioned in the beam 
half-length too. 

4. The dynamic deflection, piezoelectric voltage, and 
power all increase as the speed and magnitude of the 
moving mass increase. 

5. Similarly, a parametric analysis was conducted with 
varying load resistance. It was discovered that the 
amount of energy harvested changes with the resistance 
of the energy harvesting circuit. The harvesting power vs 
load resistance curve begins at zero, increases to a 
maximum value, and remains almost constant as the 
resistance increases. For example, the results indicate 
that the optimum power is 0.2788 µW at a resistance load 
of 0.63 MΩ for a moving load of M = 79.41 gr at a speed 
of = 2.4 m/s. 

6. By optimising specific variables in the analytical model 
of the beam, the power generated by the piezoelectric 
should indeed be increased. The optimal location of the 
piezoelectric was determined to be adjacent to the mid-
span of the beam. The length of the piezoelectric was 
optimised to be 0.63 m. When the length of the beam 
increases, the resonant frequency decreases and at the 
same time, the harvested energy increases. However, 
increasing the beam thickness has the opposite effect, 
whereas the beam width value raised does not affect the 
resonant frequency, but it decreases energy harvesting. 
To maximize the power output of the piezoelectric 
harvester, the supported beam should be designed longer, 
thinner, and narrower, provided that it cannot be 
fractured. 
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