PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hot deformation behavior of Mg-Zn-Al alloy tube processed by severe plastic deformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current study, severe plastic deformation (SPD) was applied on a commercial Mg-3Al-1Zn alloy tubes via parallel tubular channel angular pressing (PTCAP) route. Different passes of PTCAP process were applied, and microstructure, hardness and tensile properties at the room, and elevated temperatures were evaluated. The results showed that bimodal microstructure appeared and led to AZ31 alloy represented higher hardness, higher strength with a reasonable elongation at room temperature. Similarly, very high elongation to failure was achieved at a higher temperature. The increase in the number of SPD passes up to two, leads to increasing the ductility up to 263% at 400°C. Then, an increase in the number of PTCAP passes to three, leads to decrease in the ductility as the results of formation of microvoids when SPD processing at higher equivalent strains without a sufficient hydrostatic compressive stress. Relatively ductile fracture mode was also occurred in all samples.
Słowa kluczowe
Twórcy
autor
  • School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
autor
  • School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
  • School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
autor
  • School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
Bibliografia
  • [1] B.L. Mordike, T. Ebert, Magnesium: Properties - applications - potential. Materials Science and Engineering: A 302, 37-45 (2001).
  • [2] G. Faraji, P. Yavari, S. Aghdamifar, MM.Mashhadi, Mechanical and Microstructural Properties of Ultra-fine Grained AZ91 Magnesium Alloy Tubes Processed via Multi Pass Tubular Channel Angular Pressing (TCAP), Journal of Materials Science & Technology 30, 134-8 (2014).
  • [3] R. Figueiredo, T. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP, Journal of Materials Science 43, 7366-71 (2008).
  • [4] R. Lapovok, Y. Estrin, M. Popov, S. Rundell, T. Williams, Enhanced superplasticity of magnesium alloy AZ31 obtained through equal-channel angular pressing with back-pressure, Journal of Materials Science 43, 7372-8 (2008).
  • [5] H.G. Svoboda, F.Vago, Superplastic Behavior of AZ31 Processed by ECAP, Procedia Materials Science 9, 590-8 (2015).
  • [6] J. Xu, M. Shirooyeh, J. Wongsa-Ngam, D. Shan, B. Guo, T.G. Langdon, Hardness homogeneity and micro-tensile behavior in a magnesium AZ31 alloy processed by equal-channel angular pressing, Materials Science and Engineering A 586, 108-14 (2013).
  • [7] R.B. Figueiredo, T.G. Langdon, Evaluating the superplastic flow of a magnesium AZ31 alloy processed by equal-channel angular pressing, Metallurgical and Materials Transactions A 45, 3197-204 (2014).
  • [8] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K, Materials Transactions 44, 445-51 (2003).
  • [9] Y. Harai, M. Kai, K. Kaneko, Z. Horita, T.G. Langdon, Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion, Materials transactions 49, 76-83 (2008).
  • [10] S.X. Ding, C.P. Chang, P.W.Kao, Effects of Processing Parameters on the Grain Refinement of Magnesium Alloy by Equal-Channel Angular Extrusion, Metallurgical and Materials Transactions A 40, 415-25 (2009).
  • [11] R.B. Figueiredo, T.G. Langdon, Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, Materials Science and Engineering A 501, 105-14 (2009).
  • [12] Y. Miyahara, Z. Horita, T.G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP, Materials Science and Engineering A 420, 240-4 (2006).
  • [13] V. Tavakkoli, M. Afrasiab, G. Faraji, M.M. Mashhadi, Severe mechanical anisotropy of high-strength ultrafine grained Cu-Zn tubes processed by parallel tubular channel angular pressing (PTCAP), Materials Science and Engineering A 625, 50-5 (2015).
  • [14] F.K. Abu-Farha, M.K. Khraisheh, Analysis of superplastic deformation of AZ31 magnesium alloy. Advanced Engineering Materials 9, 777 (2007).
  • [15] M. Afrasiab, G. Faraji, V. Tavakkoli, M. Mashhadi, K. Dehghani, The Effects of the Multi-pass Parallel Tubular Channel Angular Pressing on the Microstructure and Mechanical Properties of the Cu-Zn Tubes, Transactions of the Indian Institute of Metals 1-7 (2015).
  • [16] K. Bryła, J. Dutkiewicz, P. Malczewski, Grain refinement in AZ31 alloy processed by equal channel angular pressing, Archives of Materials S cience 18, 18 (2009).
  • [17] G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Essadiqi, S. Yue, The influence of the as-hot rolled microstructure on the elevated temperatu re mechanical properties of magnesium AZ31 sheet, Materials Science and Engineering A 487, 243-50 (2008).
  • [18] H.K. Kim, W.J. Kim, Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation, Materials Science and Engineerin g A 385, 300-8 (2004).
  • [19] R.B. Figueiredo, T.G. Langdon, Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing, J Mater Sci 44, 475 8-62. (2009).
  • [20] A. Galiyev, R. Kaibyshev, G.Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Materialia 4 9, 1199-207 (2001).
  • [21] S. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding , Materials Science and Engineering A 325, 228-35 (2002).
  • [22] S.H. Kang, Y.S. Lee, J.H. Lee, Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics, Journ al of Materials Processing Technology 201, 436-40 (2008).
  • [23] J. Xu, X. Wang, M. Shirooyeh, G. Xing, D. Shan, B. Guo, et al. Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy proce ssed by high-pressure torsion, J. Mater. Sci. 50, 7424-36 (2015).
  • [24] D.R. Fang, Q.Q. Duan, N.Q. Zhao, J.J. Li, S.D. Wu, Z.F. Zhang, Tensile properties and fracture mechanism of Al-Mg alloy subjected to equal channel angular pressing, Materials Science and Engineering A 459, 137-44 (2007).
  • [25] Y.G. Ko, D.H. Shin, K-T.Park, C.S.Lee, An analysis of the strain hardening behavior of ultra-fine grain pure titanium, Scripta Materialia 54, 178 5-9 (2006).
  • [26] A. Vinogradov, T. Ishida, K. Kitagawa, V. Kopylov, Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu-Cr alloy produ ced by equal-channel angular pressing, Acta Materialia 53, 2181-92 (2005).
  • [27] V. Chuvil’deev, V. Kopylov, M.Y. Gryaznov, A. Sysoev, Low- temperature superplasticity of microcrystalline high-strength magnesium alloys produced by equal-channel angular pressing, Doklady Physics: Springer 343-6 (2003).
  • [28] T. Mukai, M. Yamanoi H. Watanabe, K. Higashi, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scripta Materialia 45, 89-94. (2001).
  • [29] D. Yin, K. Zhang G. Wang, W. Han, Superplasticity and cavitation in AZ31 Mg alloy at elevated temperatures, Materials Letters 59, 1714-8 (2005).
  • [30] H. Lin, J. Huang, T. Langdon, Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP, Materials Science and Engineering: A. 402, 250-7 (2005).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08471681-8db2-41d5-b2c7-75c50c70adec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.