PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem discussed in the paper is numerical modeling of thermal processes in the domain of biological tissue secured by a layer of protective clothing being in thermal contact with the environment. The cross-section of the forearm (2D problem) is treated as non-homogeneous domain in which the sub-domains of skin tissue, fat, muscle and bone are distinguished. The air gap between skin tissue and protective clothing is taken into account. The process of external heating is determined by Robin boundary condition and sensitivity analysis with respect to the perturbations of heat transfer coefficient and ambient temperature is also discussed. Both the basic boundary-initial problem and the sensitivity problems are solved by means of control volume method using Voronoi polygons.
Rocznik
Strony
591--598
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., tab.
Twórcy
autor
  • Higher School of Labour Safety Management, 8 Bankowa St., 40-007 Katowice, Poland
  • Institute of Computer and Information Sciences, Czestochowa University of Technology, 69 Dabrowskiego St., 42-200 Czestochowa, Poland
Bibliografia
  • [1] H.H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm”, Journal of Applied Physiology, 1, 93–122 (1948).
  • [2] H. Arkin, L.X. Xu and K.R. Holmes, “Recent development in modeling heat transfer in blood perfused tissues”, IEEE Trans Bio-Med. Eng. 41, 97–107 (1994).
  • [3] E. Majchrzak, “Application of different variants of the BEM in numerical modeling of bio-heat transfer processes”, MCB: Molecular & Cellular Biomechanics 10, 3, 201–232 (2013).
  • [4] E. Majchrzak, B. Mochnacki, M. Dziewonski and M. Jasinski, “Numerical modeling of hyperthermia and hypothermia processes”, Advanced Materials Research 268–270, 257–262 (2011).
  • [5] E. Majchrzak, B. Mochnacki and M. Jasinski, “Numerical modeling of bioheat transfer in multi-layer skin tissue domain subjected to a flash fire”, Computational Fluid and Solid Mechanics 1–2, 1766–1770 (2003).
  • [6] E. Majchrzak and M. Dziewonski, “Heat transfer in biological tissue subjected to the action of cylindrical cryoprobe”, Computational and Experimantal Methods, 1, 29–36 (1999).
  • [7] M. Dziewonski, B. Mochnacki and R. Szopa, “Sensitivity of biological tissue freezing process on the changes of cryoprobe cooling rate”, Mechanika Kaunas University of Technology, 82–87 (2011).
  • [8] F. Xu, K.A. Seffen and T.J. Lu, “Non-Fourier analysis of skin biothermomechanics”, International Journal of Heat and Mass Transfer 51, 2237–2259 (2008).
  • [9] Y. Zhang, “Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues”, International Journal of Heat and Mass Transfer 52, 4829–4834 (2009).
  • [10] E. Majchrzak, “Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method”, CMES: Computer Modeling in Engineering and Sciences 69, 1, 43–60 (2010).
  • [11] D. Fiala, K.J. Lomas and M. Stohrer, “A computer model of human thermoregulation for a wide range of environmental conditions: the passive system”, Journal of Applied Physiology 87, 5, 1957–1972 (1999)
  • [12] P. Chitrphiromsri, Modeling of Thermal Performance Firefighter Protecting Clothing During the Intense Heat Exposure, Mechanical Engineering, Doctoral Theses, Raleigh, (2004).
  • [13] M. Schuenke, E. Schulte, et al., General Anatomy and Musculoskeletal System (Atlas of Anatomy), Thieme, Stuttgart – New York 2010.
  • [14] M. Kleiber, Parameter Sensitivity in Nonlinear Mechanics, J. Willey & Sons Ltd., London, 1997.
  • [15] K. Dems and B. Rousselet, “Sensitivity analysis for transient heat conduction in a solid body – Part I”, Structural Optimization 17, 36–45 (1999).
  • [16] M. Jasinski, “Investigation of tissue thermal damage process with application of direct sensitivity method” MCB: Molecular & Cellular Biomechanics 10, 3, 183–199 (2013).
  • [17] B. Mochnacki and E. Majchrzak, “Sensitivity of the skin tissue on the activity of external heat sources”, CMES: Computer Modeling in Engineering and Sciences, 4, 3–4, 431–438 (2003).
  • [18] D.F. Watson, “Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes”, The Computer Journal 24, 2, 167–172 (1981).
  • [19] Z. Domanski, M. Ciesielski and B. Mochnacki, “Application of control volume method using the Voronoi tessellation in numerical modelling of solidification process”, AIP Conference Proceedings, 1220, 17–26 (2010).
  • [20] M. Ciesielski and B. Mochnacki, “Application of the control volume method using the Voronoi polygons for numerical modeling of bio-heat transfer processes”, Journal of Theoretical and Applied Mechanics 52, 4, 927–935 (2014).
  • [21] E. Majchrzak and B. Mochnacki, “Sensitivity analysis of transient temperature field in microdomains with respect to dualphase-lag-model parameters”, Journal for Multiscale Computational Engineering 12(1), 65–77 (2014).
  • [22] B. Mochnacki and E. Majchrzak, “Identification of macro and micro parameters in solidification model”, Bull. Pol. Ac.: Tech 5(1), 107–113 (2007).
  • [23] B. Mochnacki and A. Piasecka Belkhayat, “Numerical modeling of skin tissue heating using the interval finite difference method”, MCB: Molecular and Cellular Biomechanics 10, 3, 133–144 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08467999-9520-4736-83db-a2655eadc162
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.