PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uncertainty evaluation of multilateration-based geometric error measurement considering the repeatibility of positioning of the machine tool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sequential multilateration principle is often adopted in geometric error measurement of CNC machine tools. To identify the geometric errors, a single laser tracker is placed at different positions to measure the length between the target point and the laser tracker. However, the measurement of each laser tracker position is not simultaneous and measurement accuracy is mainly subject to positioning repeatability of the machine tool. This paper attempts to evaluate the measurement uncertainty of geometric errors caused by the positioning repeatability of the machine tool and the laser tracker spatial length measurement error based on the Monte Carlo method. Firstly, a direct identification method for geometric errors of CNC machine tools based on geometric error evaluation constraints is introduced, combined with the geometric error model of a three-axis machine tool. Moreover, uncertainty contributors caused by the repeatability of positioning of numerically controlled axes of the machine tool and the laser length measurement error are analyzed. The measurement uncertainty of the geometric error and the volumetric positioning error is evaluated with the Monte Carlo method. Finally, geometric error measurement and verification experiments are conducted. The results show that the maximum volumetric positioning error of the machine tool is 84.1 μm and the expanded uncertainty is 5.8 μm (𝑘 = 2). The correctness of the geometric error measurement and uncertainty evaluation method proposed in this paper is verified compared with the direct geometric error measurement methods.
Rocznik
Strony
49--63
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China
Bibliografia
  • [1] Mannan, M. A., Ramesh, R., & Poo, A. N. (2000). Error compensation in machine tools - a review. Part I: geometric, cutting-force induced and fixture-dependent errors. Int. Journal of Machine Tools and Manufacture, 40, 1235-1256. https://doi.org/10.1016/S0890-6955(00)00009-2
  • [2] Zongchao, G., Zhen, T., & Xiangqian, J. (2021). Review of geometric error measurement and compensation techniques of ultra-precision machine tools. Light: Advanced Manufacturing, 2, 14. https://doi.org/10.37188/lam.2021.014
  • [3] Muralikrishnan, B., Phillips, S., & Sawyer, D. (2016). Laser trackers for large-scale dimensional metrology: A review. Precision Engineering, 44, 13-28. https://doi.org/10.1016/j.precisioneng.2015.12.001
  • [4] Hughes, E. B., Wilson, A., & Peggs, G. N. (2000). Design of a High-Accuracy CMM Based on Multi-Lateration Techniques. CIRP Annals - Manufacturing Technology, 49(1), 391-394. https://doi.org/10.1016/S0007-8506(07)62972-2
  • [5] Umetsu, K.., Furutnani, R, Osawa, S., Takatsuji, T. & Kurosawa, T. (2005). Geometric calibration of a coordinate measuring machine using a laser tracking system. Measurement Science & Technology, 16(12), 2466. https://doi.org/10.1088/0957-0233/16/12/010
  • [6] Schwenke, H., Franke, M., Hannaford, J., & Kunzmann, H. (2005). Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Annals, 54(1), 475-478. https://doi.org/10.1016/S0007-8506(07)60148-6
  • [7] Wang, J., & Guo, J. (2016). Research on the base station calibration of multi-station and time-sharing measurement based on hybrid genetic algorithm. Measurement, 94, 139-148. https://doi.org/10.1016/j.measurement.2016.07.076
  • [8] Wendt, K., Franke, M., & Härtig, F. (2012). Measuring large 3D structures using four portable tracking laser interferometers. Measurement, 45(10), 2339-2345. https://doi.org/10.1016/j.measurement.2011.09.020
  • [9] Schwenke, H., Schmitt, R., Jatzkowski, P., & Warmann, C. (2009). On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer. CIRP Annals, 58(1), 477-480. https://doi.org/10.1016/j.cirp.2009.03.007
  • [10] Ibaraki, S., Kudo, T., Yano, T., Takatsuji, T., Osawa, S., & Sato, O. (2015). Estimation of three-dimensional volumetric errors of machining centers by a tracking interferometer. Precision Engineering, 39, 179-186. https://doi.org/10.1016/j.precisioneng.2014.08.007
  • [11] Aguado, S., Pérez, P., Albajez, J. A., Velázquez, J., & Santolaria, J. (2017). Monte Carlo method to machine tool uncertainty evaluation. Procedia Manufacturing, 13, 585-592. https://doi.org/10.1016/j.promfg.2017.09.105
  • [12] Liu, Y., Dong, G., & Yong, L. (2015). Volumetric calibration in multi-space in large-volume machine based on measurement uncertainty analysis. The International Journal of Advanced Manufacturing Technology, 76 (9-12), 1493-1503. https://doi.org/10.1007/s00170-014-6367-5
  • [13] Mutilba, U., Yagüe-Fabra, J. A., Gomez-Acedo, E., Kortaberria, G., & Olarra, A. (2018). Integrated multilateration for machine tool automatic verification. CIRP Annals, 555-558. https://doi.org/10.1016/j.cirp.2018.04.008
  • [14] Cong, H., Zha, J., Li, L., Li, Y., & Chen, Y. (2021). Accuracy evaluation of geometric error calibration using a laser tracer via a formulaic approach. Measurement Science and Technology, 32(2), 025003. https://doi.org/10.1088/1361-6501/abb9e8
  • [15] Rahman, M., Heikkala, J., & Lappalainen, K. (2000). Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory. International Journal of Machine Tools & Manufacture, 40(10), 1535-1546. https://doi.org/10.1016/s0890-6955(99)00101-7
  • [16] International Organization for Standardization. (2012). Test code for machine tools, in part 1: geometric accuracy of machines operating under no-load or quasi-static conditions (ISO Standard No. 230-1:2012). https://www.iso.org/standard/46449.html
  • [17] Chen, H., Jiang, B., Shi, Z., Sun, Y., Song, H., & Tang, L. (2019). Uncertainty modeling of the spatial coordinate error correction system of the CMM based on laser tracer multi-station measurement. Measurement Science and Technology, 30(2), 025007. https://doi.org/10.1088/1361-6501/aafb1b
  • [18] International Organization for Standardization. (2006). Test code for machine tools, in Part 2: determination of accuracy and repeatability of positioning numerically controlled axes (ISO Standard No. 230-2:2006). https://www.iso.org/standard/35988.html
Uwagi
1. This work was supported by the Basic Technology Research of the State Administration of Science, Technology and Industry for National Defence (J0067-1922-FJC) and by the Major Science and Technology Project of Sichuan Province (2020ZDZX0003).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08465fda-636f-4331-a743-ebe1b182a970
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.