PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the force causing the levitation of the starting trolley of the unmanned aerial vehicle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work discusses numerical and experimental researches, which are focused on developing a coherent model of magnetic interactions causing the levitation of the starting trolley of the unmanned aerial vehicle (UAV) catapult. The starting trolley is levitating over the catapult’s tracks, which generate the magnetic field. The levitation is made possible by the diamagnetic properties of high-temperature superconductors, placed in supports of the starting trolley. The introduction of the article briefly analyzes the catapult structure. Next, it explains the nature of associated with the Meissner and flux pinning effect magnetic interactions which causes the levitation phenomenon. The paper presents the results of numerical analysis of the magnetic field, generated by the catapult’s tracks arranged in two configurations: a “chessboard” and a “gutter” pattern. The numerical model was solved, using the finite element method. Parameterization of the numerical model was made based on the measurements of the magnetic field, generated by a single magnet.
Rocznik
Strony
1177--1185
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Mechatronics, ul. Boboli 8, 02-525 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, ul. Boboli 8, 02-525 Warsaw, Poland
autor
  • Military University of Technology, Mechatronics and Aerospace Faculty, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warsaw, Poland
Bibliografia
  • [1] Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, et al., “High altitude long endurance unmanned aerial vehicle of a new generation – A design challenge for a low cost, reliable and high performance aircraft”, Bull. Pol. Ac.: Tech. 52 (3), 173–194 (2004).
  • [2] W. Wilkowski, M. Lisowski, M. Wyszyński, and D. Wierzbicki, “The use of unmanned aerial vehicles (drones) to determine the shoreline of natural watercourses”, J. Water Land Dev. 35, 259–264 (2017).
  • [3] Z. Kuś, “Analysis of dynamical properties of object tracking system elements”, Bull. Pol. Ac.: Tech. 64 (3), 479–489 (2016).
  • [4] M. Sadraey, Unmanned Aircraft Design: A Review of Fundamentals, Morgan & Claypool Publishers, 2017.
  • [5] D. Rohacs and J. Rohacs, “Magnetic levitation assisted aircraft take-off and landing (feasibility study–GABRIEL concept)”, Prog. Aeronaut. Sci. 85, 33–50 (2016).
  • [6] J. Rohacs and D. Rohacs, “Problems and Barriers Impeding the Implementation of MagLev Assisted Aircraft Take-Off and Landing Concept”, J. Transp. Technol. 8 (2), 91–118 (2018).
  • [7] D. Rohacs, M. Voskuijl and N. Siepenkötter, “Evaluation of landing characteristics achieved by simulations and flight tests on a small-scaled model related to magnetically levitated advanced take-off and landing operations”, in 29th Congress of the International Council of the Aeronautical Sciences, 2014.
  • [8] K. Sibilski, K. Falkowski, R. Kaleta, E. Ładyżyńska-Kozdraś and A. Sibilska-Mroziewicz, “Development of the Small-Scale Model of Maglev System Assisted Aircraft Safety Take-off and Landing”, in 30th Congress of the International Council of the Aeronautical Sciences, 2016, pp. 25–30.
  • [9] A. Sibilska-Mroziewicz and E. Ładyżyńska-Kozdraś, “Mathematical Model of Levitating Cart of Magnetic Uav Catapult”, J. Theor. Appl. Mech. 56 (3), 793–802 (2018).
  • [10] A. Sibilska-Mroziewicz, E. Ładyżyńska-Kozdraś, and K. Falkowski, “Modelling of Forces Acting on a System of the UAV Launcher, Based on Passive Magnetic Suspensions with Superconductors”, Our Sea 67 (1), 60–68 (2020).
  • [11] E. Ładyżyńska-Kozdraś, A. Sibilska-Mroziewicz, S. Czubaj, K. Falkowski, K. Sibilski, and W. Wróblewski, “Take-off and landing magnetic system for UAV carriers”, J. Mar. Eng. Technol. 16, 298–304 (2017).
  • [12] J. Wang, S. Wang, Y. Zeng, H. Huang, F. Luo, Z. Xu, et al., “The first man-loading high temperature superconducting maglev test vehicle in the world”, Physica C 378–381, 809–814 (2002).
  • [13] L. Schultz, O. de Haas, P. Verges, C. Beyer, S. Rohlig, H. Olsen, et al., “Superconductively levitated transport system-the supratrans project”, IEEE Trans. Appl. Supercond. 15 (2), 2301–2305 (2005).
  • [14] D. Dias, G. Sotelo, F. Sass, E. Motta, R. de Andrade, and R. Stephan, “Dynamical tests in a linear superconducting magnetic bearing”, Phys. Procedia, 36, 1049–1054 (2012).
  • [15] X. Liu, B. Deng, S. Bao, C. Liang, Y. Wan, B. Liu, et al., “Magnetic Field Test on an Electromagnetic Turnout Prototype System for High-Tc Superconducting Maglev”, IEEE Trans. Appl. Supercond. 30 (1), 1–6 (2020).
  • [16] Z. Deng, W. Zhang, Y. Chen, X. Yang, Ch. Xia, and J. Zheng, “Optimization study of the Halbachpermanent magnetic guideway for hightemperature superconducting magneticlevitation”, Supercond. Sci. Technol. 33, 034009 (2020).
  • [17] A. Szewczyk, A. Wiśniewski, R. Puźniak, and H. Szymczak, Magnetism and superconductivity, PWN, Warszawa, 2012, [in Polish].
  • [18] K. Falkowski, Passive magnetic suspensions, WAT, Warszawa, 2016, [in Polish].
  • [19] D.J. Griffiths, Introduction to Electrodynamics, PWN, Warszawa, 2005, [in Polish].
  • [20] Ch. Kimm, Superconductor Levitation. Concepts and Experiments, Springer, 2019.
  • [21] E. Ładyżyńska-Kozdraś and A. Sibilska-Mroziewicz, “Analysis of the Levitation Forces Generated by High-Temperature Superconductors Located within the Magnetic Field of a UAV catapult System”, Problems of Mechatronics. Armament, Aviation, Safety Engineering 8 (3), 87–94 (2017).
  • [22] B. Rosenstein and D. Li, “Ginzburg-Landau theory of type ll superconductors in magnetic field”, Rev. Mod. Phys. 82 (1), 109–168 (2010).
  • [23] R. Feynman, R. Leighton, and M. Sands, The Feynman lectures on physics, vol. III ch. 21, PWN, 1972.
  • [24] J. Bardeen, L. Cooper, and R. Schrieffer, “Theory of superconductivity”, Physical Review, 108:1175, 162–164 (1957).
  • [25] W. Jones, “Earnshaw’s theorem and the stability of matter,” Eur. J. Phys. 1 (2), 85 (1980).
  • [26] M. McHenry and R. Sutton, “Flux pinning and dissipation in high temperature oxide superconductors”, Prog. Mater. Sci. 38, 159–310, (1994).
  • [27] A. Kordyuk, “Magnetic levitation for hard superconductors”, J. Appl. Phys. (Melville, NY, U. S.), 83 (1), 610–612 (1998).
  • [28] F.C. Moon, Superconducting levitation: Applications to bearings and magnetic transportation, John Wiley & Sons, 2008.
  • [29] P. Bernstein and J. Noudem, “Superconducting magnetic levitation: principle, materials, physics and models”, Supercond. Sci. Technol. 33 (3), 033001 (2020).
  • [30] E. Ładyżyńska-Kozdraś, A. Sibilska-Mroziewicz, and S.K. Czubaj, “Experimental Measurement of Magnetic Field Generated by Neodymium Magnet”, in Mechatronics 2017: Recent Technological and Scientific Advances, 2018, vol. 644, pp. 562–570.
  • [31] Z. Csendes, J. Weiss, and S. Hoole, “Alternative vector potential formulations of 3-D magnetostatic field problems”, IEEE Trans. Magn. 18 (2), 367–372 (1982).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08421797-389a-4f5c-a349-9c936a5578b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.