PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Role of Planktonic Organisms in Urea Metabolism in Lakes of Temperate Zone : Case Study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although urea is the simplest N-containing organic compound ubiquitous in all aquatic environments, its role in N-nutrition of planktonic biota and relevance for eutrophication of freshwater ecosystems is still insufficiently defined and often bypassed. The dynamics of production of autochthonous urea as well as maximal potential net ureolytic activity (net URA Vmax) of phyto- and bacterioplakton were studied in mesocosm experiment and verified during the field studies conducted in the Great Mazurian Lake system (GMLS). Analysis of the obtained results revealed that the proteins were the main autochthonous urea precursors. Urea concentration in the studied mesocosms and in GMLS surface waters was positively correlated with flagellate, ciliate and crustacean biomass and, less evidently, with bacterial biomass (BB). In surface waters of GMLS net URA Vmax, similarly as urea concentrations, increased with their trophic status. Analysis of correlation of potential ureolytic activity with chlorophylla, (Chla) BB and L-leucine aminopeptidase activity (AMP) in lakes of different trophic status suggests that although both groups of planktonic microorganisms participated in urea decomposition processes, in eutrophic ones bacterial decomposition of urea is more evident. In highly eutrophic lakes excess of phosphorus induced higher nitrogen requirement resulting in the increase in protein decomposition rate. Intensified protein degradation resulted faster urea production, which finally induced higher ureolytic activity of planktonic microorganisms. In profundal waters of GMLS potential ureolytic activity was distinctly lower than in surface waters. This was caused by low temperature of hypolymnetic waters, inhibitory effect of hydrogen sulphide and lack of phytoplankton, which is known as a primary urea consumer.
Rocznik
Strony
468--484
Opis fizyczny
Bibliogr. 63 poz., mapa, tab., wykr.
Twórcy
autor
  • Department of Microbial Ecology and Environmental Biotechnology, Institute of Botany, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw
  • University of Warsaw, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warsaw, Poland
  • Department of Microbial Ecology and Environmental Biotechnology, Institute of Botany, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw
  • University of Warsaw, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warsaw, Poland
  • Department of Lake Fisheries, Inland Fisheries Institute in Olsztyn, Rajska 2, 11–500 Giżycko, Poland
  • Nencki Institute of Experimental Biology, 3 Pasteur Street, 02–093 Warsaw, Poland
autor
  • Department of Microbial Ecology and Environmental Biotechnology, Institute of Botany, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw
  • University of Warsaw, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warsaw, Poland
Bibliografia
  • [1] Arar E. J., Collins B. 1997 — In vitro determination of chlorophyll-a and phaeophytin-a in marine and freshwater phytoplankton by florescence — Environmental Monitoring and Support Laboratory, U.S. EPA.
  • [2] Båmstedt U. 1985 — Seasonal excretion rates of macrozooplankton from the Swedish west coast — Limnol. Oceanogr. 30: 607–617.
  • [3] Balushkina E. V., Vinberg G. G. 1978 — Relationship between body weight and size in plankton animals (In: Experimental and Field Investigations of Biological Production in Lakes, Ed: G. G. Vinberg) — Zoological Institute, Academy of Sciences USSR, Leningrad, pp. 58–72.
  • [4] Bronk D. A., See J. H., Bradley P., Killberg L. 2006 — DON as a source of bioavailable nitrogen for phytoplankton — Biogeosci. Discuss, 3: 1247–1277.
  • [5] Berman T. D., Bronk A. 2003 — Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems — Aquat. Microb. Ecol. 31: 279–305.
  • [6] Bennet M. E., Hobbie J. E. 1972 — The uptake of glucose by Chlamydomonas sp — J. Phycol. 8: 292–398.
  • [7] Belatik A., Hotchandani S., Carpentier R., Tajmir-Riahi H.-A. 2012 — Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins — PLoS ONE, 7: e36723. doi: 10.1371/journal.pone.0036723.
  • [8] Bianchi T. S., Canuel E. A. 2011 — Chemical biomarkers in aquatic ecosystems — Princeton University Press, Princeton, New Jersey, pp: 128.
  • [9] Bidigare R. R. 1983 — Nitrogen Excretion by Marine Zooplankton (In: Nitrogen in Marine Environment, Eds: J. Carpenter, G. Douglas) — Academic Press, Paris, San Diego, San Francisco, Sao Paulo, Sydney, Tokyo, Toronto: pp. 385–406.
  • [10] Bogdan K. G., Gilbert J. J. 1982 — Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: Clearance rates, selectivities, and contributions to community grazing — Limnol. Oceanogr. 27: 918–934.
  • [11] Busse W., Kaspari H., Klemme J. H. 1984 — Urea: an intermediate of aerobic and anaerobic purine degradation in Rhodopseudomonas capsulata — FEMS Microbiol. Lett. 25: 33–36.
  • [12] Carlson R. E. 1977 — A trophic state index for lakes Carlson — Limnol. Oceanogr. 22: 361–369.
  • [13] Caron D. A., Goldman J. C. 1990 — Protozoan nutrient regeneration (In: Ecology of marine protozoa (Ed: G. M. Capriculo) — Oxford University Press, New York: pp. 283–306.
  • [14] Chróst R. J., Siuda W. 2006 — Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient — Limnol. Oceanogr. 51: 749–762. doi: 10.4319/lo.2006.51.1_ part_2.0749.
  • [15] Chróst R. J., Adamczewski T. Kalinowska K., Skowrońska A. 2009 — Effect of organic phosphorus and nitrogen enrichment of mesotrophic lake water on dynamics and diversity of planktonic microbial communities - DNA and protein case studies (mesocosm experiments)— Pol. J. Microb. 58: 163–180.
  • [16] Cho B. C., Azam F. 1995 — Urea decomposition by bacteria in the Southern California Bight and its implications for the mesopelagic nitrogen cycle — Mar. Ecol. Prog. Ser. 122: 21–26.
  • [17] Cho B. C., Park M. G., Shim J. H., Azam F. 1996 — Significance of bacteria in urea dynamics in coastal surface waters — Mar. Ecol. Prog. Ser. 142: 19–26.
  • [18] Conover R. J., Gustavson, K. R. 1999 — Sources of urea in arctic seas: Zooplankton metabolism — Mar. Ecol. Prog. Ser. 179: 41–54.
  • [19] Dagg M. J., Cowles T., Whitledge T., Smith S., Judkins D. 1980 — Grazing and excretion by zooplankton in the Peru upwelling system during April 1977 — Deep-Sea Res. 27A: 4–59.
  • [20] Ejsmont-Karabin J. 1998 — Empirical equations for biomass calculation of planktonic rotifers — Polish Archives of Hydrobiology, 45: 513–522.
  • [21] Glibert P. M. 1993 — The interdependence of uptake and release of NH4+ and organic nitrogen — Mar. Microb. Food Webs, 7: 53–67.
  • [22] Glibert P. M., Harrison J., Heil C., Seitzinger S. 2006 — Escalating worldwide use of urea — a global change contributing to coastal eutrophication — Biogeochemistry, 77: 441–463.
  • [23] Gilbert P. M., Terlizzi D. E. 1999 — Cooccurrence of elevated urea levels and Dinoflagellate blooms in temperate estuarine aquaculture ponds — Appl. Environ. Microbiol 65: 5594–5596.
  • [24] Gottschalk G. 1986 — Bacterial metabolism, 2nd ed. — Springer-Verlag, New York pp. 104–140.
  • [25] Greenwood J. A., Mills J., Tyler, P. D., Jones C. W. 1998 — Physiological regulation, purification and properties of urease from Methylophilusmethylotrophus — FEMS Microbiol. Lett. 160: 131–135.
  • [26] Hirata H., Nagata W. 1982 — Excretion rates and excreted compounds of the rotifer Brachionus plicatilis O.F. Müller in culture — Memories of the faculty of Fisheries Kagoshima University, 31: 161–174.
  • [27] Holmes R. M., Aminot A., Kérouel R., Hooker B. A., Peterson B. J. 1999 — A simple and precise method for measuring ammonium in marine and freshwater ecosystems — Can. J. Fish. Aquat. Sci. 56: 1801–1808.
  • [28] Ignatiades L. 1986 — Annual Variability of [14C] Urea Utilization by Natural Marine Phytoplankton — Br. Phycol. J. 21: 209–215.
  • [29] Johannes R. E. 1965 — Influence of marine protozoa on nutrient regeneration — Limnol. Oceanogr. 10: 433–442.
  • [30] Kauppinen E. S. 2013 — Trophic state of the Great Masurian Lakes system in the past, present and future — causes mechanisms and effects of changes — Ph.D. thesis, Faculty of Biology, University of Warsaw, Warszawa.
  • [31] Kessler M. A., Meinitzer A., Wolfbeis O. S. 1997 — Albumin blue 580 fluorescence assay for albumin — Anal. Biochem. 248: 181–182, doi: 10.1006/abio.1997.2113.
  • [32] Khan M. N., Mohammad F. 2014 — Eutrophication: Challenges and Solutions (In: Eutrophication: Causes, Consequences and Control, Vol. II, Eds: A.A. Ansari, S. Gill, S.) — Springer, Dordecht, Heidelberg, London, New York: pp. 1–15.
  • [33] Le Corre P., Wafar M., L'Helguen S., Maguer J.-F. 1996 — Ammonium assimilation and regeneration by fractionated plankton in permanently well-mixed temperate waters — J. Plankton Res. 18: 355–370.
  • [34] L'Helguen S., Slawyk G., Le Corre P. 2005 — Seasonal patterns of urea regeneration by size-fractionated microheterotrophs in well-mixed temperate coastal waters — J. Plankton Res. 27: 263–270.
  • [35] McCarthy J. J. 1972 — The uptake of urea by natural populations of marine phytoplankton — Limnol. Oceanogr. 17: 738–748.
  • [36] Méndez C., Uribe E. 2012 — Control of Branchionus sp. and Amoeba sp. in cultures of Arthrospira sp — Lat. Am. J. Aquat. Res. 40: 553–561.
  • [37] Miller C. A., Glibert P. M. 1998 — Nitrogen excretion by the calanoid copepod Acartia tonsa: results of mesocosm experiments — J. Plankton Res. 20: 1767–1780.
  • [38] Mitamura O. 1986 — Urea metabolism and its significance in the nitrogen cycle in the euphotic layer of Lake Biwa. III. Influence of the environmental parameters on the response of nitrogen assimilation — Arch. Hydrobiol. 107: 281–299.
  • [39] Mitamura O. 2012 — Biogeochemical cycling of urea in the aquatic systems of Pindaré and Turiaçu River basins, a pre-Amazonian floodplain, Baixada Maranhense, Brazil — Acta Limnol. Bras (online) 24: 167–180.
  • [40] Mitamura O., Saijo Y. 1986 — Urea metabolism and its significance in the nitrogen cycle in the euphotic layer of Lake Biwa. IV. Regeneration of urea and ammonium — Arch. Hydrobiol. 134: 179–194.
  • [41] Mitamura O., Kawashima M., Maeda H. 2000 — Urea decomposition by picophytoplankton in euphotic zone of Lake Biwa — Limnology, 1: 19–26.
  • [42] Newell B. S., Morgan B., Cundy J. 1967 — The determination of urea in seawater — J. M. Res. 25: 201–202.
  • [43] Park M. G., Shim J. H., Cho B. Ch. 1997 — Urea decomposition activities in an ammonium enriched freshwater pond — Aquat. Microb. Ecol. 13: 303–331.
  • [44] Park M. G., Shim J. H., Cho B. Ch. 1993 — Adaptations of estuarine and freshwater phytoplankton to urea decomposition — J. Oceanol. Soc. Korea, 28: 323–331.
  • [45] Présing M., Herodek S., Preston T., Vörös L. 2001 — Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton — Freshwater Biol. 46: 25–139.
  • [46] Price N. M., Harrison P. J. 1988 — Uptake of urea C and urea N by the coastal marine diatom Thalassiosira pseudonana — Limnol. Oceanogr. 33: 528–537.
  • [47] Price N. M., Morell F. M. M. 1991 — Colimitation of phytoplankton growth by nickel and nitrogen — Limnol. Oceanogr. 36: 1071–1077.
  • [48] Sambrook J., Fritsch E. F., Maniatis T. 1989 — Molecular Cloning: A Laboratory Manual, Second Edition — Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • [49] Satoh Y. 1980 — Production of Urea by Bacterial Decomposition of Organic Matter Including Phytoplankton — Int. Revue ges Hydrobiol. 65: 295–301.
  • [50] Satoh Y., Hanya T. 1976 — Decomposition of urea by the larger particulate fraction and the free bacteria fraction in a pond water — Int. Revue ges Hydrobiol. 61: 799–806.
  • [51] Sherr B. F., Sherr E. B. 1984 — The role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems (In: Current Perspectives in Microbial Ecology, Eds: M. J. Klug, C. A. Reddy) — American Society for Microbiology, Washington D.C. pp. 412–423.
  • [52] Siuda W., Chróst R. J. 2002 — Decomposition and utilization of particulate organic matter by bacteria in lakes of different trophic status — Pol. J. Environ. Stud. 11: 53–65.
  • [53] Siuda W., Chróst R. J. 2006 — Urea and ureolytic activity in lakes of diferent trophic status — Pol. J. Microbiol. 55: 211–225.
  • [54] Siuda W., Kiersztyn B., Chróst R. J. 2007 — The dynamics of protein decomposition in lakes of different trophic status — reflections on the assessment of the real proteolytic activity in situ. — J. Microbiol. Biotechnol. 17: 897–904.
  • [55] Siuda W., Kiersztyn B. 2015 — Urea in lake ecosystem: the origin, concentration and distribution of urea in relation to trophic state of the Great Mazurian Lakes (Poland) — Pol. J. Ecol. 63: 110–123. doi: 10.3161/15052249PJE2015.6 3.1.010.
  • [56] Siuda W., Wcisło R., Chróst R. J. 1991 — Composition and utilization of photosynthetically produced organic matter in a eutrophic lake — Arch. Hydrobiol. 121: 473–484.
  • [57] Solomon C. M., Collier J. L., Berg G. M., Glibert P. M. 2010 — Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review — Aquat. Microb. Ecol. 59: 67–88.
  • [58] Taga N. 1972 — Occurrence of urea decomposing bacteria in the neritic and oceanic waters of the Northwest Pacific Ocean (In: Proc 2nd CSK symposium, Ed: K. Sugawara) — Saikon Pub. Co. Ltd. Tokyo, pp. 341.
  • [59] Therkildsen M. S., King G. M., Lund B. 1996 — Urea production and turnover following the addition of AMP, CMP, RNA and a protein mixture to a marine sediment — Aquat. Microb. Ecol. 10: 173–179.
  • [60] Turley C. M. 1986 — Urea uptake by phytoplankton at different fronts and associated stratified and mixed waters on the European shelf — Br. Phycol. J. 21: 225–238.
  • [61] Vogels G. D., Van der Drift C. 1976 — Degradation of purines and pyrimidines by microorganisms — Bacteriol. Rev. 40: 403–468.
  • [62] Zehr J. P, Ward B. B. 2002 — Nitrogen cycling in the ocean: new perspectives on processes and paradigms — Appl. Environ. Microbiol. 68: 1015–1024.
  • [63] ZoBell C. E., Feltham C. B. 1935 — The occurrence and activity of urea splitting bacteria in the sea — Science, 81: 234–236.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08412ffd-8000-409a-ae71-7ec78d49eb15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.