PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent Progress of Phytoremediation-Based Technologies for Industrial Wastewater Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytoremediation is considered of a cost effective and environmentally friendly technology and has been used successfully for the remediation of soils and water contaminated with various pollutants. Specifically for full scale application to treat industrial wastewater, phytoremediation is used as sole technology for different types of wetlands. However, phytoremediation of polluted water in wetland type reactor has been mostly studied as black box. The method to measure the performance is only based on pollutant removal efficiency and there is very limited information available about of the pollutant removal mechanisms and process dynamics in these systems. Thus, the aim of this chapter was to briefly review basic processes of phytoremediation, its mechanisms and parameters, and its interaction between rhizo-remediation and microbe-plant. In addition, this chapter also elaborated phytoremediation challenges and strategies for full-scale application, its techniques to remove both organic and inorganic contaminants by aquatic plants in water, and some examples of applications in industries.
Rocznik
Strony
208--220
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
  • Research Centre for Environmental and Clean Technology, National Research and Innovation Agency Republic of Indonesia, Kawasan Puspitek Gd. 820, Serpong 15314, Tangerang Selatan, Indonesia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
  • Centre for Standardization and Industrial Pollution Prevention Services, The Ministry of Industry Republic of Indonesia, Jalan Ki Mangunsarkoro 6, Semarang 50136, Jawa Tengah, Indonesia
  • Research Centre for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia, Kawasan Sains dan Teknologi Soekarno, Cibinong, Kabupaten Bogor 16911, Indonesia
  • Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
  • Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
  • Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia
Bibliografia
  • 1. Abdullah, S.R.S., Al-Baldawi, I.A., Almansoory, A.F., Purwanti, I.F., Al-Sbani, N.H., Sharuddin, S.S.N., 2020. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 247, 125932. https://doi.org/10.1016/j.chemosphere.2020.125932
  • 2. Ahmad, J., Abdullah, S.R.S., Hassan, H.A., Rahman, R.A.A., Idris, M., 2017. Screening of tropical native aquatic plants for polishing pulp and paper mill final effluent. Malaysian J. Anal. Sci., 21, 105–112. https://doi.org/10.17576/mjas-2017-2101-12
  • 3. Al-Ajalin, F.A.H., Idris, M., Abdullah, S.R.S., Kurniawan, S.B., Imron, M.F., 2020a. Effect of wastewater depth to the performance of short-term batching-experiments horizontal flow constructed wetland system in treating domestic wastewater. Environ. Technol. Innov., 20, 101106. https://doi.org/10.1016/j.eti.2020.101106
  • 4. Al-Ajalin, F.A.H., Idris, M., Abdullah, S.R.S., Kurniawan, S.B., Imron, M.F. 2020b. Evaluation of short-term pilot reed bed performance for real domestic wastewater treatment. Environ. Technol. Innov. 20, 101110. https://doi.org/10.1016/j.eti.2020.101110
  • 5. Al-Ajalin, F.A.H., Idris, M., Abdullah, S.R.S., Kurniawan, S.B., Imron, M.F. 2020c. Design of a reed bed system for treatment of domestic wastewater using native plants. J. Ecol. Eng., 21, 22–28. https://doi.org/10.12911/22998993/123256
  • 6. Al-Baldawi, I.A., Abdullah, S.R.S., Anuar, N., Suja, F., Mushrifah, I. 2015. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol. Eng., 74, 463–473. https://doi.org/10.1016/j.ecoleng.2014.11.007
  • 7. Al Falahi, O.A., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Ewadh, H.M., Kurniawan, S.B., Imron, M.F. 2022. Occurrence of pharmaceuticals and personal care products in domestic wastewater, available treatment technologies, and potential treatment using constructed wetland: A review. Process Saf. Environ. Prot., 168, 1067–1088. https://doi.org/10.1016/j.psep.2022.10.082
  • 8. Almansoory, A.F., Idris, M., Abdullah, S.R.S., Anuar, N., Kurniawan, S.B. 2021. Response and capability of Scirpus mucronatus (L.) in phytotreating petrol-contaminated soil. Chemosphere, 269, 128760. https://doi.org/10.1016/j.chemosphere.2020.128760
  • 9. Alshekhli, A.F., Hasan, H.A., Muhamad, M.H., Sheikh Abdullah, S.R. 2020. Development of Adsorbent from Phytoremediation Plant Waste for Methylene Blue Removal. J. Ecol. Eng., 21, 207–215. https://doi.org/10.12911/22998993/126873
  • 10. Armstrong, J., Armstrong, W., Beckett, P.M. 1992. Phragmites australis: Venturi‐ and humidity‐induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. https://doi.org/10.1111/j.1469-8137.1992.tb05655.x
  • 11. Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D.L. 2018. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci., 871. https://doi.org/10.3389/fpls.2018.01473
  • 12. Bansal, S., Lishawa, S.C., Newman, S., Tangen, B.A., Wilcox, D., Albert, D., Anteau, M.J., Chimney, M.J., Cressey, R.L., DeKeyser, E., Elgersma, K.J., Finkelstein, S.A., Freeland, J., Grosshans, R., Klug, P.E., Larkin, D.J., Lawrence, B.A., Linz, G., Marburger, J., Noe, G., Otto, C., Reo, N., Richards, J., Richardson, C., Rodgers, L.R., Schrank, A.J., Svedarsky, D., Travis, S., Tuchman, N., Windham-Myers, L. 2019. Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management. Wetlands, 39, 645–684. https://doi.org/10.1007/s13157-019-01174-7
  • 13. Bolan, N.S., Park, J.H., Robinson, B., Naidu, R., Huh, K.Y. 2011. Phytostabilization. A green approach to contaminant containment. Adv. Agron., 112, 145–204. https://doi.org/10.1016/B978-0-12-385538-1.00004-4
  • 14. Correa, D.F., Beyer, H.L., Fargione, J.E., Hill, J.D., Possingham, H.P., Thomas-Hall, S.R., Schenk, P.M. 2019. Towards the implementation of sustainable biofuel production systems. Renew. Sustain. Energy Rev., 107, 250–263. https://doi.org/10.1016/j.rser.2019.03.005
  • 15. Dakora, F.D., Phillips, D.A. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil, 245, 35–47. https://doi.org/10.1023/A:1020809400075
  • 16. Das, S.K., Ghosh, G.K., Avasthe, R. 2021. Applications of biomass derived biochar in modern science and technology. Environ. Technol. Innov., 21. https://doi.org/10.1016/j.eti.2020.101306
  • 17. Diacono, M., Persiani, A., Testani, E., Montemurro, F., Ciaccia, C. 2019. Recycling agricultural wastes and by-products in organic farming: Biofertilizer production, yield performance and carbon footprint analysis. Sustain, 11. https://doi.org/10.3390/su11143824
  • 18. Elias, S.H., Mohamed, M., Nor-Anuar, A., Muda, K., Hassan, M.A.H.M., Othman, M.N., Chelliapan, S. 2014. Water hyacinth bioremediation for ceramic industry wastewater treatment-application of rhizofiltration system. Sains Malaysiana.
  • 19. Hawrot-Paw, M., Ratomski, P., Mikiciuk, M., Staniewski, J., Koniuszy, A., Ptak, P., Golimowski, W. 2019. Pea cultivar Blauwschokker for the phytostimulation of biodiesel degradation in agricultural soil. Environ. Sci. Pollut. Res., 26, 34594–34602. https://doi.org/10.1007/s11356-019-06347-9
  • 20. Imron, M.F., Kurniawan, S.B., Ismail, N. ‘Izzati, Abdullah, S.R.S., 2020. Future challenges in diesel biodegradation by bacteria isolates: A review. J. Clean. Prod., 251, 119716. https://doi.org/10.1016/j.jclepro.2019.119716
  • 21. Imron, M.F., Kurniawan, S.B., Soegianto, A. 2019a. Characterization of mercury-reducing potential bacteria isolated from Keputih non-active sanitary landfill leachate, Surabaya, Indonesia under different saline conditions. J. Environ. Manage., 241, 113–122. https://doi.org/10.1016/j.jenvman.2019.04.017
  • 22. Imron, M.F., Kurniawan, S.B., Soegianto, A., Wahyudianto, F.E. 2019b. Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon, 5, e02206. https://doi.org/10.1016/j.heliyon.2019.e02206
  • 23. Ismail, N., Izzati, Abdullah, S.R.S., Idris, M., Hasan, H.A., Halmi, M.I.E., Al Sbani, N.H., Jehawi, O.H. 2019. Simultaneous bioaccumulation and translocation of iron and aluminium from mining wastewater by Scirpus grossus. Desalin. Water Treat., 163, 133–142. https://doi.org/10.5004/dwt.2019.24201
  • 24. Ismail, N.I., Abdullah, S.R.S., Idris, M., Kurniawan, S.B., Effendi Halmi, M.I., AL Sbani, N.H., Jehawi, O.H., Hasan, H.A. 2020. Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands. J. Environ. Manage., 267, 110643. https://doi.org/10.1016/j.jenvman.2020.110643
  • 25. Jehawi, O.H., Abdullah, S.R.S., Kurniawan, S.B., Ismail, N., Izzati I., Idris, M., Al Sbani, N.H., Muhamad, M.H., Hasan, H.A., Abu Hasan, H., Idris, M., Al Sbani, N.H., Muhamad, M.H., Hasan, H.A. 2020. Performance of pilot Hybrid Reed Bed constructed wetland with aeration system on nutrient removal for domestic wastewater treatment. Environ. Technol. Innov., 19, 100891. https://doi.org/10.1016/j.eti.2020.100891
  • 26. Kadir, A.A., Abdullah, S.R.S., Othman, B.A., Hasan, H.A., Othman, A.R., Imron, M.F., Ismail, N., Izzati, Kurniawan, S.B. 2020. Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock. Chemosphere, 259, 127468. https://doi.org/10.1016/j.chemosphere.2020.127468
  • 27. Kamaruzzaman, M.A., Abdullah, S.R.S., Hasan, H.A., Hassan, M., Idris, M., Ismail, N. 2019. Potential of hexavalent chromium-resistant rhizosphere bacteria in promoting plant growth and hexavalent chromium reduction. J. Environ. Biol., 40, 427–433. https://doi.org/10.22438/jeb/40/3(si)/sp-03
  • 28. Karpowicz, M., Zieliński, P., Grabowska, M., Ejsmont-Karabin, J., Kozłowska, J., Feniova, I. 2020. Effect of eutrophication and humification on nutrient cycles and transfer efficiency of matter in freshwater food webs. Hydrobiologia, 847, 2521–2540. https://doi.org/10.1007/s10750-020-04271-5
  • 29. Kis, M., Sipka, G., Maróti, P. 2017. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria. Photosynth. Res., 132, 197–209. https://doi.org/10.1007/s11120-017-0357-z
  • 30. Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Said, N.S.M., Ismail, N., Izzati, Hasan, H.A., Othman, A.R., Purwanti, I.F. 2020. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health, 17, 1–33. https://doi.org/10.3390/ijerph17249312
  • 31. Kurniawan, S.B., Purwanti, I.F., Titah, H.S. 2018. The effect of pH and aluminium to bacteria isolated from aluminium recycling industry. J. Ecol. Eng., 19, 154–161. https://doi.org/10.12911/22998993/86147
  • 32. Kwoczynski, Z., Čmelík, J. 2021. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J. Clean. Prod., 280. https://doi.org/10.1016/j.jclepro.2020.124302
  • 33. Logeshwaran, P., Megharaj, M., Chadalavada, S., Bowman, M., Naidu, R. 2018. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov., 10, 175–193. https://doi.org/10.1016/j.eti.2018.02.001
  • 34. Mao, C., Feng, Y., Wang, X., Ren, G. 2015. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev., 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032
  • 35. McCutcheon, S.C., Jørgensen, S.E. 2018. Phytoremediation. Encycl. Ecol. 4, 568–582. https://doi.org/10.1016/B978-0-444-63768-0.00069-X
  • 36. Miranda, A.F., Kumar, N.R., Spangenberg, G., Subudhi, S., Lal, B., Mouradov, A. 2020. Aquatic Plants, Landoltia punctata, and Azolla filiculoides as Bio-Converters of Wastewater to Biofuel. Plants 9, 437. https://doi.org/10.3390/plants9040437
  • 37. Mostafa, M. 2015. Waste water treatment in textile industries-the concept and current removal technologies. Mostafa.
  • 38. Mustafa, H.M., Hayder, G. 2020. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J., https://doi.org/10.1016/j.asej.2020.05.009
  • 39. Nottingham, A.T., Hicks, L.C., Ccahuana, A.J.Q., Salinas, N., Bååth, E., Meir, P. 2018. Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol. Fertil. Soils, 54, 219–228. https://doi.org/10.1007/s00374-017-1247-4
  • 40. Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D.J., Kumar, R. 2020. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innov., 101261. https://doi.org/10.1016/j.eti.2020.101261
  • 41. Purwanti, I.F., Kurniawan, S.B., Ismail, N. ‘Izzati, Imron, M.F., Abdullah, S.R.S. 2019a. Aluminium removal and recovery from wastewater and soil using isolated indigenous bacteria. J. Environ. Manage., 249, 109412. https://doi.org/10.1016/j.jenvman.2019.109412
  • 42. Purwanti, I.F., Obenu, A., Tangahu, B.V., Kurniawan, S.B., Imron, M.F., Abdullah, S.R.S. 2020. Bioaugmentation of Vibrio alginolyticus in phytoremediation of aluminium-contaminated soil using Scirpus grossus and Thypa angustifolia. Heliyon, 6, e05004. https://doi.org/10.1016/j.heliyon.2020.e05004
  • 43. Purwanti, I.F., Simamora, D., Kurniawan, S.B. 2018a. Toxicity test of tempe industrial wastewater on cyperus rotundus and scirpus grossus. Int. J. Civ. Eng. Technol., 9, 1162–1172.
  • 44. Purwanti, I.F., Tangahu, B.V., Titah, H.S., Kurniawan, S.B., 2019b. Phytotoxicity of aluminium contaminated soil to scirpus grossus and typha angustifolia. Ecol. Environ. Conserv., 25, 523–526.
  • 45. Purwanti, I.F., Titah, H.S., Tangahu, B.V., Kurniawan, S.B., 2018b. Design and application of wastewater treatment plant for “pempek” food industry, Surabaya, Indonesia. Int. J. Civ. Eng. Technol., 9, 1751–1765.
  • 46. Rahim, F., Abdullah, S.R.S., Hasan, H.A., Kurniawan, S.B., Mamat, A., Yusof, K.A., Ambak, K.I. 2022. A feasibility study for the treatment of 1,2-dichloroethane-contaminated groundwater using reedbed system and assessment of its natural attenuation. Sci. Total Environ., 814, 152799. https://doi.org/10.1016/j.scitotenv.2021.152799
  • 47. Rahman, M.A., Hasegawa, H. 2011. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere, 83, 633–646. https://doi.org/10.1016/j.chemosphere.2011.02.045
  • 48. Rezania, S., Oryani, B., Cho, J., Sabbagh, F., Rupani, P.F., Talaiekhozani, A., Rahimi, N., Ghahroud, M.L. 2020. Technical aspects of biofuel production from different sources in Malaysia - A review. Processes. https://doi.org/10.3390/PR8080993
  • 49. Schwammberger, P.F., Lucke, T., Walker, C., Trueman, S.J. 2019. Nutrient uptake by constructed floating wetland plants during the construction phase of an urban residential development. Sci. Total Environ, 677, 390–403. https://doi.org/10.1016/j.scitotenv.2019.04.341
  • 50. Shahid, M.J., AL-surhanee, A.A., Kouadri, F., Ali, S., Nawaz, N., Afzal, M., Rizwan, M., Ali, B., Soliman, M.H., 2020. Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. Sustainability, 12, 5559. https://doi.org/10.3390/su12145559
  • 51. Sharma, P., Tripathi, S., Chaturvedi, P., Chaurasia, D., Chandra, R., 2021. Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: Potential application in wastewater treatment. Bioresour. Technol., 320, 124353. https://doi.org/10.1016/j.biortech.2020.124353
  • 52. Sharuddin, S.S.N.B., Abdullah, S.R.S., Hasan, H.A., Othman, A.R. 2018. Comparative tolerance and survival of scirpus grossus and lepironia articulata in real crude oil sludge. Prog. Color. Color. Coatings. https://doi.org/10.14419/ijet.v8i1.16522
  • 53. Sun, G., Zhao, Y.Q., Allen, S.J. 2007. An alternative arrangement of gravel media in tidal flow reed beds treating pig farm wastewater. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270-006-9316-6
  • 54. Tangahu, B.V., Ningsih, D.A., Kurniawan, S.B., Imron, M.F. 2019. Study of BOD and COD removal in batik wastewater using Scirpus grossus and Iris pseudacorus with intermittent exposure system. J. Ecol. Eng., 20, 130–134. https://doi.org/10.12911/22998993/105357
  • 55. Titah, H.S., Purwanti, I.F., Tangahu, B.V., Kurniawan, S.B., Imron, M.F., Abdullah, S.R.S., Ismail, N.I. 2019. Kinetics of aluminium removal by locally isolated Brochothrix thermosphacta and Vibrio alginolyticus. J. Environ. Manage., 238, 194–200. https://doi.org/10.1016/j.jenvman.2019.03.011
  • 56. Titah, H.S., Rozaimah, S., Abdullah, S.R.S., Idris, M., Anuar, N., Basri, H., Mukhlisin, M., Tangahu, B.V., Purwanti, I.F., Kurniawan, S.B. 2018. Arsenic resistance and biosorption by isolated Rhizobacteria from the roots of Ludwigia octovalvis. Int. J. Microbiol., 2018, 1–10. https://doi.org/10.1155/2018/3101498
  • 57. Ullah, A., Heng, S., Munis, M.F.H., Fahad, S., Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ. Exp. Bot., 117, 28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001
  • 58. Varma, M., Gupta, A.K., Ghosal, P.S., Majumder, A. 2021. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Sci. Total Environ., 755. https://doi.org/10.1016/j.scitotenv.2020.142540
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-083bb61f-a0e7-438f-8f01-08c94a03dc61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.