PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the performance properties of commercially produced roller cone bit coatings

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the material aspects of roller cone bits with milled teeth. The research concerns the properties of commercial product overlays provided by the company Glinik Drilling Tools. The analyzed coatings were produced according to the company’s procedures using two surfacing methods: gas welding and plasma transferred arc (PTA) welding. Metallographic observations and chemical composition analyses were carried out. The evaluation criteria in the context of the surfacing application were mechanical properties: hardness, impact strength, and abrasion resistance. The overlays produced by gas welding were characterized by lower hardness, impact strength, and abrasion resistance. The study showed that it differed from the deposit made by the PTA method in the matrix material and in the average size of the tungsten carbides. The dissolution of primary carbides and formation of secondary carbides such as Fe3C and Ni17W3 were found to occur in both surfacing types. This contributes to the increased brittleness of the matrix and reduced wear resistance of the materials.
Wydawca
Rocznik
Strony
110--123
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St, 02-507 Warsaw, Poland
  • Glinik Drilling Tools, 1 Michalusa St, 38-320 Gorlice, Poland
autor
  • Glinik Drilling Tools, 1 Michalusa St, 38-320 Gorlice, Poland
  • Glinik Drilling Tools, 1 Michalusa St, 38-320 Gorlice, Poland
Bibliografia
  • [1] Franca LF. Drilling action of roller-cone bits: modeling and experimental validation. J Energy Resour Technol. 2010;132(4): 043101. doi:10.1115/1.4003168.
  • [2] Glinik Drilling Tools Catalog 2021. https://glinik.com.pl/wp-content/uploads/2021/08/Catalog-2021_-vl_EN_compressed-2.pdf. [Accessed 3rd April 2023].
  • [3] Šporin J, Mrvar P, Janc B, Vukelić Ž. Expression of the self-sharpening mechanism of a roller cone bit during wear due to the influence of the erosion protection carbide coating. Coat. 2021;11(11): 1308. doi:10.3390/coatings11111308.
  • [4] Sumrunpis N. Types of drilling bits. Weblog. https://petgeo.weebly.com/types-of-drilling-bits.html [Accessed 7th April 2023].
  • [5] Abbas RK. A review on the wear of oil drill bits (conventional and the state of the art approaches for wear reduction and quantification). Eng Fail Anal. 2018;90: 554–584. doi:10.1016/j.engfailanal.2018.03.026.
  • [6] Abbas RK, Ghanbarzadeh A, Hassanpour A. A novel method for estimating the real-time dullness of tricone oil drill bits. Eng Fail Anal. 2020;109:104386. doi:10.1016/j.engfailanal.2020.104386.
  • [7] Šporin J, Mrvar P, Petrić M, Vižintin G, Vukelić Ž. The characterization of wear in roller cone drill bit by rock material – sandstone. J Pet Sci Eng. 2019;173: 1355–1367. doi:10.1016/j.petrol.2018.10.090.
  • [8] Bu CG. Radial clearance is key factor affecting roller bearing life prediction in tricone bit. Adv Mater Res. 2008;44: 233–238. doi:10.4028/www.scientific.net/amr.44-46.233.
  • [9] Prakash S, Mukhopadhyay AK. Reliability analysis of tricone roller bits with tungsten carbide insert in blasthole drilling. Int J Min Reclam Environ. 2018;34(2): 101–118. doi:10.1080/17480930.2018.1530055.
  • [10] Larsen-Basse J. Wear of hard-metals in rock drilling: a survey of the literature. Pow Metal. 1973;16(31): 1–32. 10.1179/pom.1973.16.31.001.
  • [11] Šporin J, Balaško T, Mrvar P, Janc B, Vukelić Ž. Change of the properties of steel material of the roller cone bit due to the influence of the drilling operational parameters and rock properties. Energies. 2020;13(22): 5949. doi:10.3390/en13225949.
  • [12] Xiao Q, Sun WL, Yang KX, Xing XF, Chen ZH, Zhou HN. Wear mechanisms and micro-evaluation on WC particles investigation of WC-FE composite coatings fabricated by laser cladding. Surf Coat Technol. 2021;420: 127341. doi:10.1016/j.surfcoat.2021.127341.
  • [13] Fang Z, Griffo A, White B, Belnap D, Hamilton R, Portwood G, Cox P, Hilmas G, Bitler J. Chipping resistant polycrystalline diamond and carbide composite materials for roller cone bits. In: SPE Annual Technical Conference and Exhibition. 2001. doi:10.2118/71394-MS.
  • [14] Ndlovu S, Durst K, Göken M. Investigation of the sliding contact properties of WC-Co hard metals using nanoscratch testing. Wear. 2007;263(7-12): 1602–1609. DOI: 10.1016/j.wear.2006.11.044.
  • [15] Beste U, Jacobson S. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons Wear. 2008;264(11-12): 1129–1141. doi:10.1016/j.wear.2007.01.030.
  • [16] Badisch E, Kirchgaßner M. Influence of welding parameters on microstructure and wear behaviour of a typical NICRBSI hardfacing alloy reinforced with tungsten carbide. Surf Coat Technol. 2008;202(24); 6016–6022. doi:10.1016/j.surfcoat.2008.06.185.
  • [17] Katiyar PK, Singh PK, Singh R, Kumar A. Modes of failure of cemented tungsten carbide tool bits (WC/CO): A study of wear parts. Int J Refract Metals Hard Meterials. 2016;54: 27–38. doi:10.1016/j.ijrmhm.2015.06.018.
  • [18] Liu W, Gao D. Microstructure and wear of Ni-WC Hardfacing used for steel-body PDC bits. Int J Refract Metals Hard Meterials. 2021;101: 105683. doi:10.1016/j.ijrmhm.2021.105683.
  • [19] Garcia-Ayala EM, Tarancon S, Gonzalez Z, Ferrari B, Pastor JY, Sanchez-Herencia AJ. Processing of WC/W composites for extreme environments by colloidal dispersion of powders and SPS sintering. Int J Refract Metals Hard Meterials. 2019;84: 105026. doi:10.1016/j.ijrmhm.2019.105026.
  • [20] Maroli B, Dizdar S. Effect of type and amount of tungsten carbides on the abrasive wear of laser cladded nickel based coatings. ITSCE. 2015: 11-14. doi:10.31399/asm.cp.itsc2015p0345.
  • [21] Czupryński A. Microstructure and abrasive wear resistance of metal matrix composite coatings deposited on steel grade AISI 4715 by Powder Plasma transferred arc welding part 2. Mechanical and structural properties of a nickel-based alloy surface layer reinforced with particles of tungsten carbide and synthetic metal–diamond composite, Materials. 2021;14(11): 2805. doi:10.3390/ma14112805.
  • [22] Huang Z, Li G. Failure analysis of roller cone bit bearing based on mechanics and microstructure. J Fail Anal Prev. 2018;18: 342–349. doi:10.1007/s11668-018-0419-3.
  • [23] Li Q, Lei TC, Chen WZ. Microstructural characterization of WCP reinforced Ni–Cr–B–Si–C composite coatings. Surf Coat Technol. 1999;114(2-3):285–291. doi:10.1016/s0257-8972(99)00056-0.
  • [24] Zhong M, Liu W, Yao K, Goussain JC, Mayer C, Becker A. Microstructural evolution in high power laser cladding of stellite 6+WC layers. Surf CoatTechnol. 2002; doi:10.1016/s0257-8972(02)00165-2.
  • [25] Zhong M, Liu W. Microstructure evolution of Stellite 6+WC by high power laser cladding. Acta Metal Sin. 202;38: 495–500. doi:10.1016/S0257-8972(02)00165-2.
  • [26] Liyanage T, Fisher G, Gerlich AP. Microstructures and abrasive wear performance of PTAW deposited ni– WC overlays using different Ni-alloy chemistries. Wear. 2012;274: 345–354. doi:10.1016/j.wear.2011.10.001.
  • [27] Gassmann RC. Laser cladding with (WC+W2C)/co– CR–C and (WC+W2C)/Ni–B–Si composites for enhanced abrasive wear resistance. Mater Sci Technol. 1996;12(8): 691–696. doi:10.1179/mst.1996.12.8.691.
  • [28] Sue A, Sreshta H, Qiu BH. Improved hardfacing for drill bits and drilling tools. J Therm Spray Technol. 2011;20: 372–377. doi:10.1007/s11666-010-9569-x.
  • [29] Marques PV, da Trevisan R. ARC fusion of self-fluxed nickel alloys. J Braz Soc Mech Sci. 2000;22: 379–387. doi:10.1590/s0100-73862000000300001.
  • [30] Grigorescu I. Phase characterization in ni alloy-hard carbide composites for fused coatings. Surf Coat Technol. 1995;76: 494–498. doi:10.1016/02578-9729(50)25111-
  • [31] Hamar-Thibau S, Valignat N, Lebaili S. In Int. Congr. X-ray Optics and Microanalysis, Manchester, 1992, Inst. Phys. Conf. Ser. No. 130,2: 189–192.
  • [32] Yang L, Yu T, Li M, Zhao Y, Sun J. Microstructure and wear resistance of in-situ synthesized ti(c, N) ceramic reinforced Fe-based coating by laser cladding. Ceram Int. 2018;18: 22538–22548. doi:10.1016/j.ceramint.2018.09.025.
  • [33] Fernández MR, García A, Cuetos JM, González R, Noriega A, Cadenas M. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC. Wear. 2015l;324, 80–89. doi:10.1016/j.wear.2014.12.021.
  • [34] Tehrani HM, Shoja-Razavi R, Erfanmanesh M, Hashemi SH, Barakat M. Evaluation of the mechanical properties of WC-Ni composite coating on an AISI 321 steel substrate. Opt Laser Technol. 2020;127: 106138. doi:10.1016/j.optlastec.2020.106138.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-083a41bb-0734-46df-b06c-68244763617b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.