PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of MODWT and log-normal distribution model for automatic epilepsy identification

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel approach based on the maximal overlap discrete wavelet transform (MODWT) and log-normal distribution (LND) model was proposed for identifying epileptic seizures from electroencephalogram (EEG) signals. To carry out this study, we explored the potentials of MODWT to decompose the signals into time-frequency sub-bands till sixth level. And demodulation analysis (DA) was investigated to reveal the subtle envelope information from the sub-bands. All obtained coefficients were then used to calculate LDN features, scale parameter (s) and shape parameter (m), which were fed to a random forest classifier (RFC) for classification. Besides, some experiments have been conducted to evaluate the performance of proposed model in the consideration of various wavelet functions as well as feature extractors. The implementation results demonstrated that our proposed technique has yielded remarkable classification performance for all the concerned problems and outperformed the reported methods in terms of the universality. The major finding of this research is that the proposed technique was capable of classifying EEG segments with satisfied accuracy and clinically acceptable computational time. These advantages have make our technique an attractive diagnostic and monitoring tool, which helps doctors in providing better and timely care for the patients.
Twórcy
autor
  • College of Communication Engineering, Jilin University, Ren Min Street, Changchun, China
autor
  • College of Communication Engineering, Jilin University, Ren Min Street, Changchun, China
autor
  • College of Communication Engineering, Jilin University, Ren Min Street, Changchun, China
Bibliografia
  • [1] Li J, Zhou W, Yuan S, Zhang Y, Li C, Wu Q. An improved sparse representation over learned dictionary method for seizure detection. Int J Neural Syst 2016;26(1):1550035.
  • [2] Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 2007;32(4):1084–93.
  • [3] Song Y, Zhang J. Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction. Expert Syst Appl 2013;40(14):5477–89.
  • [4] World Health Organization. Epilepsy; 2016, http://www.who.int/mental_health/neurology/epilepsy/en/ index.html [accessed September, 2016].
  • [5] Li S, Zhou W, Qi Y, Geng S, Cai D. Feature extraction and recognition of ictal EEG using EMD and SVM. Comput Biol Med 2013;43(7):807–16.
  • [6] Bhardwaj A, Tiwari A, Krishna R, Varma V. A novel genetic programming approach for epileptic seizure detection. Comput Methods Programs Biomed 2016;124:2–18.
  • [7] Siuly S, Li Y. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Comput Methods Programs Biomed 2015;119(1):29–42.
  • [8] Bronzino JD. Principles of electroencephalography. The biomedical engineering handbook. 2nd ed. Boca Raton, FL: CRC Press LLC; 2000.
  • [9] Siuly S, Li Y, Wu J, Yang J. Developing a logistic regression model with cross-correlation for motor imagery signal recognition. IEEE International Conference on Complex Medical Engineering; 2011. pp. 502–7.
  • [10] Gandhi T, Panigrahi BK, Anand S. A comparative study of wavelet families for EEG signal classification. Neurocomputing 2011;74(17):3051–7.
  • [11] Zhu G, Li Y, Wen P. Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm. Comput Methods Programs Biomed 2014;115(2):64–75.
  • [12] Sharma M, Dhere A, Pachori RB, Acharya UR. An automatic detection of focal EEG signals using new class of time- frequency localized orthogonal wavelet filter banks. Knowl Based Syst 2017;118:217–27.
  • [13] Prince PGK, Hemamalini RR, Kumar S. Seizure detection by classification of EEG signals based on DWT reconstruction error and CWT using a Novel Wavelet. Biomed Res 2015;26 (3):530–3.
  • [14] Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Process 2014;8(7):1323–34.
  • [15] Liu Y, Zhou W, Yuan Q, Chen S. Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2012;20 (6):749–55.
  • [16] Martis RJ, Acharya UR, Tan JH, Petznick A, Tong L, Chua CK, et al. Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int J Neural Syst 2013;23(5):1350023.
  • [17] Acharya UR, Vinitha S, Chattopadhyay S, Yu W, Alvin APC. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst 2011;21(3):199–211.
  • [18] Chua KC, Chandran V, Acharya UR, Lim CM. Application of higher order spectra to identify epileptic EEG. J Med Syst 2011;35(6):1563–71.
  • [19] Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS. Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 2012;7(4):401–8.
  • [20] Acharya UR, Sree SV, Suri JS. Automatic detection of epileptic EEG signals using higher order cumulant feature. Int J Neural Syst 2011;21(5):403–14.
  • [21] Shensa MJ. The discrete wavelet transform: wedding the à trous and Mallat algorithms. IEEE Trans Signal Process 1992;40(10):2464–82.
  • [22] Hafez AG, Ghamry E. Geomagnetic sudden commencement automatic detection via MODWT. IEEE Trans Geosci Remote Sens 2013;51(3):1547–54.
  • [23] Department of Epileptology, University of Bonn, Germany. EEG Time Series Data; 2015, http://epileptologie-bonn.de/cms/front_content.php? idcat=193&lang=3&changelang=3 [accessed September, 2015].
  • [24] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev 2001;64(6):061907.
  • [25] Percival DB, Walden AT. Wavelet methods for time series analysis. Cambridge: Cambridge University Press; 2000.
  • [26] Cornish CR, Bretherton CS, Percival DB. Maximal overlap wavelet statistical analysis with application to atmospheric turbulence. Bound Layer Meteorol 2006;119(2):339–74.
  • [27] Zhu L, Wang Y, Fan Q. MODWT-ARMA model for time series prediction. Appl Math Model 2014;38(5–6):1859–65.
  • [28] Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015;26:56–64.
  • [29] Jha R, Raju D, Sen A. Analysis of tokamak data using a novel Hilbert transform based technique. Phys Plasmas 2006;13 (8):082570.
  • [30] Vallejos CA, Steel MFJ. Objective Bayesian survival analysis using shape mixtures of log-normal distributions. J Am Stat Assoc 2014;110(510):697–710.
  • [31] Sharp WE. A log-normal distribution of alluvial diamonds with an economic cutoff. Econ Geol 1976;3(71):648–55.
  • [32] Baran S, Lerch S. Log-normal distribution based EMOS models for probabilistic wind speed forecasting. Q J R Meteorol Soc 2014;141(691):2289–99.
  • [33] Yang Y, Yue S. The maximum likelihood estimation of log-normal distribution parameters. J Jiu Jiang Univ 2007;26 (6):55–7.
  • [34] Breiman L. Random forests. Mach Learn 2001;45:5–32.
  • [35] Tomita TM, Maggioni M, Vogelstein JT. Randomer forests. Stat 2015;34:887–99.
  • [36] Swami P, Gandhi TK, Panigrahi BK, Tripathi M, Anand S. A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst Appl 2016;56(1): 116–30.
  • [37] Song JL, Hu W, Zhang R. Automated detection of epileptic EEGs using a novel fusion feature and extreme learning machine. Neurocomputing 2016;175(PA):383–91.
  • [38] Nicolau N, Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst Appl 2012;39(1):202–9.
  • [39] Kaya Y, Uyar M, Tekin R, Selcuk Y. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl Math Comput 2014;243:209–19.
  • [40] Das AB, Bhuiyan MIH, Alam SMS. Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. Signal Image Video Process 2016;10(2):259–66.
  • [41] Riaz F, Hassan A, Rehman S, Niazi IK, Dremstrup K. EMD-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans Neural Syst Rehabil Eng 2016;24(1):28–35.
  • [42] Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 2011;38(10):13475–81.
  • [43] Kumar Y, Dewal ML, Anand RS. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 2014;133(8):271–9.
  • [44] Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Method 2010;191(1):101–9.
  • [45] Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007;2007:80510.
  • [46] Alam SM, Bhuiyan MI. Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomedical Health Inform 2013;17(2):312–8.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0839e77c-3ba7-46e3-b5b8-13b1488f4a65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.