PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental study is carried out to investigate the heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. The test matrix is worked out in the turbulent regime with Reynolds number varying between 5000 and 25,000, particle volume concentrations of 0.01%, 0.03% and 0.04% and for heat flux varied between 800 W/m2 and 1000 W/m2, which is sourced from a solar flat plate collector. The influence of mass flow rate, inlet temperature and volume concentration on the LMTD, effectiveness, convective heat transfer coefficient and pressure drop are studied. The results showed an increase in convective heat transfer coefficient and effectiveness of silver/water nanofluids as the particle volume concentration is increased. A maximum enhancement in convective heat transfer coefficient of 12.4% and effectiveness of 6.14% is recorded. It is also observed that the apparent increase in the heat transfer coefficient is due to the enhanced thermo-physical properties of the nanofluids, and delayed development of boundary layer in the entrance regions due to the addition of nanoparticles.
Rocznik
Strony
489--496
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu, India
autor
  • Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu, India
autor
  • Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu, India
autor
  • Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu, India
autor
  • Indian Institute of Information Technology, Design and Manufacturing (IIITD&M)-Kancheepuram, Chennai 600048, India
Bibliografia
  • [1] A.S. Ahuja, Augmentation of heat transport in laminar flow of polystyrene suspensions experiments and results, Journal of Applied Physics 46 (83) (1975) 408–3416.
  • [2] A.S. Ahuja, Thermal design of heat exchanger employing laminar flow of particle suspensions, International Journal of Heat and Mass Transfer 25 (5) (1982) 725–728.
  • [3] G. Hetsroni, R. Rozenblit, Heat transfer to a liquid–solid mixture in a flume, International Journal of Multiphase Flow 20 (4) (2005) 671–689.
  • [4] B.C. Pak, I.Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151–170.
  • [5] J.A. Eastman, S.U.S. Choi, S. Li, G. Soyez, L.J. Thompson, R.J. DiMelfi, Novel thermal properties of nanostructure materials, Material Science Forum 312 (1999) 629–634.
  • [6] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer 47 (2004) 5181–5188.
  • [7] S.Z. Heris, S.G. Etemad, M.N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer 33 (4) (2006) 529–535.
  • [8] Z. Heris, M.N. Esfahany, G.H. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow 28 (2) (2006) 203–210.
  • [9] W.Y. Lai, B. Duculescu, P.E. Phelan, R.S. Prasher, Convective heat transfer with nanofluids in a single 1.02-mm tube, in: Proceedings of ASME International Mechanical Engineering Congress and Exposition, 2006.
  • [10] J.Y. Jung, H.S. Oh, H.Y. Kwak, Forced convective heat transfer of nanofluids in microchannels, in: Proceeding of ASME International Mechanical Engineering Congress and Exposition, 2006.
  • [11] W. Williams, J. Buongiorno, L.W. Hu, Experimental investigation of turbulent convective heat transfer andpressure loss of alumina/water and zirconia/ water nanoparticle colloids (nanofluids) in horizontal tubes, ASME Journal of Heat Transfer 130 (2008) 1–6.
  • [12] W. Duangthongsuk, S. Wongwises, Effect of thermo-physical properties models on the prediction of the convective heat transfer coefficient for low concentration nanofluid, International Communications in Heat and Mass Transfer 35 (10) (2008) 1320–1326.
  • [13] W. Duangthongsuk, S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2– water nanofluid in a double-tube counter flow heat exchanger, International Journal of Heat and Mass Transfer 52 (7–8) (2009) 2059–2067.
  • [14] L. Godson, B. Raja, D. Mohan Lal, S. Wongwises, Enhancement of heat transfer using nanofluids an overview, Renewable and Sustainable Energy Reviews 14 (2) (2010) 629–641.
  • [15] L. Godson, B. Raja, D. Mohan Lal, S. Wongwises, Experimental investigation of thermal conductivity and viscosity of silver-deionized water nanofluid, Experimental Heat transfer 23 (4) (2010) 317–332.
  • [16] Drew D.A., Passman S.A. (1999) Theory of Multicomponent Fluids. Springer Berlin..
  • [17] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer 43 (2000) 3701.
  • [18] K.J. Bell, Final report of the cooperative research program on shell-and-tube heat exchangers, University of Delaware Engineering Experiment Station Bulletin 5 (1985).
  • [19] P.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, International Communication in Heat and Mass Transfer 12 (1985) 3–22.
  • [20] W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids; a renovated Maxwell model, Journal of.Nanoparticles research 5 (2003) 167.
  • [21] U. Rea, T. McKrell, L. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, International Journal of Heat and Mass Transfer 52 (2009) 2042–2048.
  • [22] Y. Xuan, Q. Li, Investigation of convective heat transfer and flow features of nanofluids, Journal of Heat Transfer 125 (1) (2003) 151–155.
  • [23] S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, T. Maré, M. Coqueux, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, International Journal Numerical Methods Heat Fluid Flow 16 (3) (2006) 275–292.
  • [24] J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer 128 (3) (2006) 240–250.
  • [25] W. Duangthongsuk, S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2– water nanofluids flowing under a turbulent flow regime, International Journal of Heat and Mass Transfer 53 (2010) 334–344.
  • [26] R.S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, International Journal of Heat and Mass Transfer 53 (2010) 4607–4618.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0834ff04-7657-4a4f-abec-5cac0e4b3973
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.