Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Non-circular gears can be used in modern machines and mechanisms for the implementation of various types of motion and have high strength and compactness compared to linkage mechanisms. This article presents the force analysis of non-circular gear on the example of the planetary mechanism with elliptical gears, providing the rotationally reciprocating motion of the impeller of the stirred tank. Based on the calculation schemes of the links, kinetostatic balance equations for each link of the mechanism are compiled and solved. Reaction forces in kinematic pairs and balancing moment on the input shaft of the mechanism are found. The results can be used in the synthesis and analysis of various machines with the proposed kinematic scheme of the mechanism.
Czasopismo
Rocznik
Tom
Strony
39--46
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
- Department of Land Transport and Mechanics, Kuban State Technological University, 350072 Krasnodar, Russia
Bibliografia
- [1] Tarabarin V.B., Tarabarina Z.I.: Model gears with variable ratios collected in Bauman Moscow State Technical University, Proceedings of Higher Educational Institutions. Machine building, 12, 84-91, 2014.
- [2] Golovin A., Tarabarin V.: Russian Models from the Mechanisms Collection of Bauman University, Springer Netherlands, Heidelberg, 2008.
- [3] Freudenstein F., Chen C.K.: Variable-ratio chain drives with noncircular sprockets and minimum slack-theory and application, Journal of Mechanical Design, 113(3), 253-262, 1991.
- [4] Dooner D.B.: Use of noncircular gears to reduce torque and speed fluctuations in rotating shafts, Journal of Mechanical Design, 119(2), 299-306, 1997.
- [5] Litvin F.L., Gonzalez-Perez I., Fuentes A., Hayasaka K.: Design and investigation of gear drives with non-circular gears applied for speed variation and generation of functions, Computer Methods in Applied Mechanics and Engineering, 197, 3783-3802, 2008.
- [6] Efremenkov E.A., An I-Kan.: Euler-Savari determination of radii of curvature of cycloid profiles, Russian Engineering Research, 30(10), 1001-1004, 2010.
- [7] Liu D., Ba Y., Ren T.: Flow fluctuation abatement of high-order elliptical gear pump by external noncircular gear drive, Mechanism and Machine Theory, 134, 338-348, 2019.
- [8] Terada H., Zhu Y., Suzuki M., Cheng C., Takahashi R.: Developments of a knee motion assist mechanism for wearable robot with a non-circular gear and grooved cams, Mechanisms and Machine Science, 3, 69-76, 2012.
- [9] Mundo D.: Geometric design of a planetary gear train with noncircular gears, Mechanism and Machine Theory, 41, 456-472, 2006.
- [10] Zheng F., Hua L., Han X., Li B., Chen D.: Linkage model and manufacturing process of shaping non-circular gears, Mechanism and Machine Theory, 96, 192-212, 2016.
- [11] Zheng F., Hua L., Han X., Li B., Chen D.: Synthesis of indexing mechanisms with non-circular gears, Mechanism and Machine Theory, 105, 108-128, 2016.
- [12] Prikhodko A.A., Smelyagin A.I., Tsybin A.D.: Kinematics of planetary mechanismswith intermittent motion, Procedia Engineering, 206, 380-385, 2017.
- [13] Smelyagin A.I., Prikhod’ko A.A.: Structure and kinematics of a planetary converter of the rotational motion into the reciprocating rotary motion, Journal of Machinery Manufacture and Reliability, 45(6), 500-505, 2016.
- [14] Prikhodko A.A., Smelyagin A.I.: Dynamics of rotationally reciprocating stirred tank with planetary actuator, Journal of Physics: Conference Series, 858, 012026, 2017.
- [15] Danieli G.A., Mundo D.: New developments in variable radius gears using constant pressure angle teeth, Mechanism and Machine Theory, 40, 203-217, 2005.
- [16] Karpov O., Nosko P., Fil P., Nosko O., Olofsson U.: Prevention of resonance oscillations in gear mechanisms using non-circular gears, Mechanism and Machine Theory, 114, 1-10, 2017.
- [17] Gao N, Meesap C, Wang S, Zhang D.: Parametric vibrations and instabilities of an elliptical gear pair, Journal of Vibration and Control, 26, 1721-1734, 2020.
- [18] Liu J.Y., Chang S.L., Mundo D.: Study on the use of a non-circular gear train for the generation of Figure-8 patterns, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220, 1229-1236, 2006.
- [19] Prikhodko A.A.: Experimental kinematic analysis of an intermittent motion planetary mechanism with elliptical gears, Journal of Measurements in Engineering, 8, 122-131, 2020.
- [20] Maláková S., Urbanský M., Fedorko G., Molnár V., Sivak S.: Design of Geometrical Parameters and Kinematical Characteristics of a Non-Circular Gear Transmission for Given Parameters, Applied Sciences, 11, 1000, 2021.
- [21] Chang S.L., Tsay C.B., Wu L.I.: Mathematical model and undercutting analysis of elliptical gears generated by rack cutters, Mechanism and Machine Theory, 31, 879-890, 2006.
- [22] Bair B.W.: Computerized tooth profile generation of elliptical gears manufactured by shaper cutters, Journal of Materials Processing Technology, 122, 139-147, 2002.
- [23] Figliolini G., Angeles J.: The synthesis of elliptical gears generated by shaper-cutters, Journal of Mechanical Design, 125, 793- 801, 2003.
- [24] Liu X., Nagamura K., Ikejo K.: Analysis of the dynamic characteristics of elliptical gears, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6, 484-497, 2012.
- [25] Cai Z., Lin C.: Dynamic model and analysis of nonlinear vibration characteristic of a curve-face gear drive, Strojniski Vestnik- Journal of Mechanical Engineering, 63, 161-171, 2017.
- [26] Zhao Y., Yu G.H., Wu C.Y.: Circuit Simulation and Dynamic Analysis of a Transplanting Mechanism with Planetary Elliptical Gears, Transactions of the ASABE, 54, 1179-1188, 2011.
- [27] Senda S., Komoda Y., Hirata Y., Takeda H., Suzuki H., Hidema R.: Fluid deformation induced by a rotationally reciprocating impeller, Journal of Chemical Engineering of Japan, 47, 151-158, 2014.
- [28] Wójtowicz R.: Flow pattern and power consumption in a vibromixer, Chemical Engineering Science, 172, 622-635, 2017.
- [29] Torubarov N.N., Serov M.V., Malyshev R.M., Torubarov S.N.: Design of actuator of the drives of nonstationary mixers, Chemical and Petroleum Engineering, 54, 552-559, 2018.
- [30] Kato Y., Tada Y., Ban M., Nagatsu Y., Iwata S., Yanagimoto K.: Improvement of mixing eflciencies of conventional impeller with unsteady speed in an impeller revolution, Journal of chemical engineering of Japan, 38(9), 688-691, 2005.
- [31] Date T., Komoda Y., Suzuki H., Hidema R., Suzuki K.: Application of a rotationally reciprocating plate impeller on crystallization process, Journal of Chemical Engineering of Japan, 51, 159-165, 2018.
- [32] Prikhodko A.A.: Synthesis and analysis of the planetary actuator of the rotationally reciprocating stirred tank, Ph. D. Thesis, Mechanical Engineering Research Institute RAS, 2019.
- [33] Ilyin V.A., Poznyak E.G.: Analytical geometry, Fizmatlit, Moscow, 2004.
- [34] Coxeter H.S.M.: Introduction to Geometry,Wiley, New York, 1969.
- [35] Senda S., Yamagami N., Komoda Y., Hirata Y., Suzuki H., Hidema R.: Power characteristics of a rotationally reciprocating impeller, Journal of chemical engineering of Japan, 48(11), 885-890, 2015.
- [36] Woziwodzki S.: Unsteady Mixing Characteristics in a Vessel with Forward-Reverse Rotating Impeller, Chemical Engineering&Technology, 34(5), 767-774, 2011.
- [37] Prikhod’ko A.A., Smelyagin A.I.: Investigation of power consumption in a mixing device with swinging movement of the actuating element, Chemical and Petroleum Engineering, 54 (3-4), 150≠155, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0834c558-c166-4e33-a14b-fcc6253aa118