PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A New Class of Fractional Cumulative Residual Entropy - Some Theoretical Results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, by differentiating the entropy’s generating function (i.e., h(t) = R SX̄F tX (x)dx) using a Caputo fractional-order derivative, we derive a generalized non-logarithmic fractional cumulative residual entropy (FCRE). When the order of differentiation α → 1, the ordinary Rao CRE is recovered, which corresponds to the results from first-order ordinary differentiation. Some properties and examples of the proposed FCRE are also presented.
Rocznik
Tom
Strony
25--29
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Mohamed Boudiaf University at M’sila, Algeria
Bibliografia
  • [1] R. Clausius, The Mechanical Theory of Heat: With its Applications to the Steam-Engine and to the Physical Properties of Bodies. London: J. Van Voorst, 1867 (ISBN: 9780343987374).
  • [2] L. Boltzmann, Vorlesungen Ueber Die Principe Der Mechanik. Leipzig: Verlag von Johann Ambrosius Barth, vol. 1, 1897 (ISBN:9781375769624).
  • [3] C.E. Shannon, “A mathematical theory of communication”, The Bell System Technical Journal, vol. 27, no. 3 , pp. 379– 423, 1948 (https://doi.org/10.1002/j.1538-7305.1948.tb01338.x).
  • [4] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics”, Journal of Statistical Physics, vol. 52, pp. 479– 487, 1988 (https://doi.org/10.1007/BF01016429).
  • [5] A. Rényi, “On measures of information and entropy”, Proceedings of the 4th Berkeley Symposium on Mathematics on Mathematical Statistics and Probability, vol. 4.1, pp. 547–561, 1960.
  • [6] T.D. Frank and A. Daffertshofer, “H-theorem for nonlinear Fokker–Planck equations related to generalized thermostatistics”, Physica A: Statistical Mechanics and its Applications, vol. 295, no. 3–4, pp. 455–474 , 2001 (https://doi.org/10.1016/S0378-4371(01)00146-7).
  • [7] A.R. Plastino, M. Casas, and A.R. Plastino, “A nonextensive maximum entropy approach to a family of nonlinear reaction–diffusion equations”, Physica A: Statistical Mechanics and its Applications, vol. 280, no. 3 –4, pp. 289– 303, 2000 (https://doi.org/10.1016/S0378-4371(00)00006-6).
  • [8] E.K. Lenzi, R.S. Mendes, and L.R. da Silva, “Statistical mechanics based on Rényi entropy, Physica A: Statistical Mechanics and its Applications, vol. 280, no. 3, pp. 337–345, 2000 (https://doi.org/10.1016/S0378-4371(00)00007-8).
  • [9] A.S. Parvan and T.S. Biró, “Extensive Rényi statistics from nonextensive entropy”, Physics Letters A, vol. 340 , no. 5– 6, pp. 375–387, 2005 (https://doi.org/10.1016/j.physleta.2005.04.036).
  • [10] S. Abe, “A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics”, Physics Letters A, vol. 224 , no. 6, pp. 326– 330, 1997 (https://doi.org/10.1016/S0375-9601(96)00832-8).
  • [11] T.M. Cover and J.A. Thomas, Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley, 1991 (ISBN: 9780471062592).
  • [12] G. Jumarie, Relative Information: Theories and Applications. Berlin and Heidelberg: Springer, 2011 (ISBN: 9783642840197).
  • [13] M. Rao, Y. Chen, B.C. Vemuri, and F. Wang, “Cumulative residual entropy: A new measure of information”, IEEE Transactions on Information Theory, vol. 50, pp. 1220–1228, 2004 (https://doi.org/10.1109/TIT.2004.828057).
  • [14] F. Wang, B.C. Vemuri, M.Rao, and Y. Chen, “Cumulative residual entropy, a new measure of information & its application to image alignment”, Proceedings 9th IEEE International Conference on Computer Vision, vol. 1, pp. 548– 553, 2003 (https://doi.org/10.1109/ICCV.2003.1238395).
  • [15] S. Baratpour and Z. Bami, “On the discrete cumulative residual entropy”, Journal of the Iranian Statistical Society, vol. 11, no. 2, pp. 203– 215 2012 (http://jirss.irstat.ir/article-1-193-en.html).
  • [16] J. Navarro, Y. del Águila, and M. Asadi, “Some new results on the cumulative residual entropy”, Journal of Statistical Planning and Inference, vol. 140, no. 1, pp. 310– 322, 2010 (https://doi.org/10.1016/j.jspi.2009.07.015).
  • [17] G. Psarrakos and J. Navarro, “Generalized cumulative residual entropy and record values”, Metrika, vol. 76, no. 5, pp. 623–640, 2013 (https://doi.org/10.1007/s00184-012-0408-6).
  • [18] G. Rajesh, E.I. Abdul-Sathar, K.R.M. Nair, and K.V. Reshmi, “Bivariate extension of dynamic cumulative residual entropy”, Statistical Methodology, vol. 16, pp. 72– 82, 2014 (https://doi.org/10.1016/j.stamet.2013.07.006).
  • [19] M. Asadi and Y. Zohrevand, “On the dynamic cumulative residual entropy”, Journal of Statistical Planning and Inference, vol. 137, no. 6, pp. 1931– 1941, 2007 (https://doi.org/10.1016/j.jspi.2006.06.035).
  • [20] S. Park and I. Kim, “On cumulative residual entropy of order statis- tics”, Statistics & Probability Letters, vol. 94 , pp. 170– 175, 2014 (https://doi.org/10.1016/j.spl.2014.07.020).
  • [21] A. Di Crescenzo and M. Longobardi, “On cumulative entropies and lifetime estimations”, in Methods and Models in Artificial and Natural Computation, J. Mira, J.M. Ferrandez, J.R., Alvarez, F. de la Paz, and F.J. Toledo, Eds. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. LNCS, vol 5601. Berlin, Heidelberg: Springer, 2009 (https://doi.org/10.1007/978-3-642-02264-7_15).
  • [22] S. Kayal, “On generalized cumulative entropies”, Probability in the Engineering and Informational Sciences, vol. 30, pp. 640 –662, 2016 (https://doi.org/10.1017/S0269964816000218).
  • [23] A. Di Crescenzo and A. Toomaj, “Further results on the generalized cumulative entropy”, Kybernetika, vol. 53, no. 5, pp. 959–982, 2017 (https://doi.org/10.14736/kyb-2017-5-0959).
  • [24] S. M. Sunoj and M. Linu, “Dynamic cumulative residual Rényi’s entropy”, A Journal of Theoretical and Applied Statistics, vol. 46, pp. 41–56, 2012 (https://doi.org/10.1080/02331888.2010.494730).
  • [25] G. Rajesh and S. M. Sunoj, “Some properties of cumula tive Tsallis entropy of order α”, Statistical Papers, vol. 60, pp. 933– 943, 2019 (https://doi.org/10.1007/s00362-016-0855-7).
  • [26] M.M. Sati and N. Gupta, “Some characterization results on dynamic cumulative residual Tsallis entropy”, Journal of Probability and Statistics, vol. 2015, Article ID 694203, 2015 (https://doi.org/10.1155/2015/694203) 1–8.
  • [27] S. Park, M. Rao, and D.W. Shin, “On cumulative residual Kullback-Leibler information”, Statistics & Probability Letters, vol. 82, no. 11, pp. 2025–2032, 2012 (https://doi.org/10.1016/j.spl.2012.06.015).
  • [28] S. Park, H.A. Noughabi, and I. Kim, “General cumulative Kullback-Leibler information”, Communications in Statistics – Theory and Methods, vol. 47, no. 7, pp. 1551–1560 , 2018 (https://doi.org/10.1080/03610926.2017.1321767).
  • [29] M.R. Ubriaco, “Entropies based on fractional calculus”, Physics Letters A, vol. 373, no. 30, pp. 2516– 2519, 2009 (https://doi.org/10.1016/j.physleta.2009.05.026).
  • [30] M. Akimoto and A. Suzuki, “Proposition of a new class of entropy”, Journal of the Korean Physical Society, vol. 38, no. 5, pp. 460– 463, 2001 (https://www.jkps.or.kr/journal/download pdf.php?spage =460&volume=38&number=5).
  • [31] H. Xiong, P. Shang, and Y. Zhang, “Fractional cumulative residual entropy”, Communications in Nonlinear Science and Numerical Simulation, vol. 78, 104879, 2019 (https://doi.org/10.1016/j.cnsns.2019.104879).
  • [32] A. Di Crescenzo, S. Kayal, and A. Meoli, “Fractional generalized cumulative entropy and its dynamic version”, Communications in Nonlinear Science and Numerical Simulation, vol. 102 , 105899 , 2021 (https://doi.org/10.1016/j.cnsns.2021.105899).
  • [33] G.W. Leibniz, “Letter from Hanover; Germany; to G.F.A. L’Hopital”, Sept. 30, 1695, in Mathematische Schriften, 1849; reprinted 1962, Olms Verlag, Hidesheim, Germany, vol. 2, pp. 301–302, 1965.
  • [34] J. Liouville, Mémoire sur le calcul des différentielles à indices quell-conques. 1832 (https://books.google.dz/books?id=6jfBtwAACAAJ).
  • [35] B. Riemann, R. Dedekind, and H.M. Weber, “Versuch einer all-gemeinen Auffassung der Integration und Differentiation”, 1847, in Bernard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlass, R. Dedekind and H. Weber, Eds. (Cambridge Library Collection – Mathematics, pp. 331– 344). Cambridge: Cambridge University Press, 2013 (https://doi.org/doi:10.1017/CBO9781139568050.020).
  • [36] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000 (https://doi.org/10.1142/3779).
  • [37] A.A. Kilbas, H. M. Srivastava, and J.J. Trujillo, Theory and applications of Fractional Differential Equations. Elsevier Science, 2006 (ISBN: 9780444518323).
  • [38] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, NIST Handbook of Mathematical Functions. New York: Cambridge University Press, 2010 (ISBN: 9780521192255).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08303b70-bb43-403e-ad18-29a56017a0c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.