PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of selected factors influencing the course of the process in liquid chromatography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examines the influence of temperature, eluent modifier type and concentration, and mobile phase flow velocity on the separation efficiency of caffeine (CAF) and phenol (PH) in Hypersil GOLD HILIC and Shodex SILICA 5NH 4D chromatographic columns. A thermodynamic analysis demonstrated that the adsorption processes of these compounds are primarily exothermic and depending on the eluent type. Acetonitrile-water (ACN:H₂O) systems provided superior selectivity between caffeine and phenol compared to methanol-water (MeOH:H₂O) systems, with selectivity improving as temperature increased in ACN:H₂O systems. Variations in eluent modifier concentration significantly impacted retention times, suggesting diverse interaction mechanisms between the analyzed compounds and the stationary phase. Furthermore, studies on column efficiency indicated that faster eluent flow reduced separation efficiency, as evidenced by HETP values. The optimal flow rates were determined to range between 0.2 and 1.25 ml/min, depending on the column tested.
Twórcy
  • Doctoral School of the Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Department of Chemical and Process Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Bhardwaj S.K., Dwivedia K., Agarwala D.D. HPLC method development and validation, Int. J. Anal. Bioanal. Chem., 2015; 5(4): 76–81.
  • 2. Ahuja S., Rasmussen H. Development for pharmaceuticals, Sep. Sci. Technol, Elsevier, 2007; 8.
  • 3. Haddad P.R., Taraji M. and Szüc R. Prediction of analyte retention time in liquid chromatography, Anal. Chem., 2021; 93: 228−256. https://doi.org/10.1021/acs.analchem.0c04190
  • 4. Bocian S. and Buszewski B. Comparison of retention properties of stationary phases imitated cell membrane in RP HPLC, J. Chromatogr. B., 2015; 990: 198–202. https://doi.org/10.1016/j.jchromb.2015.03.033
  • 5. Hung-Wei T., Song-Zhu L., Yu-Chia H., Feng-Ji D. Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography, J. Chromatogr. A., 2022; 1662: 462736. https://doi.org/10.1016/j.chroma.2021.462736
  • 6. Dejaegher B., Mangelings D. and Heyden Y.V. Method development for HILIC assays, J. Sep. Sci. 2008; 31: 1438–1448. https://doi.org/10.1002/jssc.200700680
  • 7. Redon L., Subirats X., Roses M. HILIC characterization: Estimation of phase volumes and composition for a zwitterionic kolumn, Anal. Chim. Acta, 2020; 1130: 39–48. https://doi.org/10.1016/j.aca.2020.06.035
  • 8. D’Atri V., Fekete S., Clarke A., Veuthey J.L. and Guillarme D. Recent Advances in chromatography for pharmaceutical analysis, Anal. Chem. 2019; 91: 210−239. https://doi.org/10.1021/acs.analchem.8b05026
  • 9. Chutkowski M., Ziobrowski P., Przywara M., Kamińska J. and Zapała W. Studies on the effects of process conditions on separation of B1, B2 and B3 vitamin mixture using HILIC and RPLC chromatography, AgriEng. 2022; 4: 566–591. https://doi.org/10.3390/agriengineering4030038
  • 10. Harinarayan C., Mueller J., Ljunglof A., Fahrner R., Van Alstine J., van Reis R. An exclusion mechanism in ion exchange chromatography, Biotechnol. Bioeng., 2006; 95(5): 775–87. https://doi.org/10.1002/bit.21080
  • 11. Horváth S., Lukács D., Farsang E. and Horváth K. Study of efficiency of capacity gradient ion-exchange stationary phases, Separations, 2023; 10(1): 14. https://doi.org/10.3390/separations10010014
  • 12. Striegel A.M. Size-exclusion chromatography: A twenty-first century perspective, Chromatographia, 2022; 85: 307–313. https://doi.org/10.1007/s10337-022-04143-1
  • 13. Dusan B. Size exclusion chromatography – A blessing and a curse of science and technology of synthetic polymers, J. Sep. Sci., 2010; 33: 315–335. https://doi.org/10.1002/jssc.200900709
  • 14. Parys W., Dołowy M. and Pyka-Pająk A. Significance of chromatographic techniques in pharmaceutical analysis, Processes, 2022; 10: 172. https://doi.org/10.3390/pr10010172
  • 15. Coskun O. Separation techniques: Chromatography, North Clin Istanbul, 2016; 3(2): 156–60. https://doi.org/10.14744/nci.2016.32757
  • 16. Pacheco S., Borguini R.G., Santiago M.C.P.A., Nascimento L.S.M., Godoy R.L.O. History of liquid chromatography, Rev. Virtual Quim., 2015; 7(4): 1225–1271. https://doi.org/10.5935/1984-6835.20150069
  • 17. Peng L., Gaol X., Wang L., Zhu A., Cai X., Li P., Li W. Design of experiment techniques for the optimization of chromatographic analysis conditions: A review, Electrophoresis, 2022; 43: 1882–1898. https://doi.org/10.1002/elps.202200072
  • 18. Ferreira S.L.C., Bruns R.E., Paranhos da Silva E.G., Lopes dos Santos W.N., Quintella C.S., David J.M., Bittencourt de Andrade J., Breitkreitz M.C., Sales Fontes Jardim I.C., Neto B.B. Statistical designs and response surface techniques for the optimization of chromatographic systems, J. Chromatogr. A, 2007; 27: 2–14. https://doi.org/10.1016/j.chroma.2007.03.051
  • 19. Carr P.W., Wang X., Stoll D.R. Effect of pressure, particle size, and time on optimizing performance in liquid chromatography, Anal. Chem., 2009; 81(13): 5342–53. https://doi.org/10.1021/ac9001244
  • 20. Vanhoenacker P., Sandra G. Elevated temperature and temperature programming in conventional liquid chromatography – fundamentals and applications, J. Sep. Sci., 2006; 29: 1822–1835. https://doi.org/10.1002/jssc.200600160
  • 21. Buszewski B., Bocian S. and Zera R. Influence of temperature and pressure on the preferential adsorption of component of hydroorganic mobile phase in liquid chromatography, Adsorption, 2010; 16: 437–445. https://doi.org/10.1007/s10450-010-9236-z
  • 22. Chester T.L., Coym J.W. Effect of phase ratio on van’t Hoff analysis in reversed-phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy, J. Chromatogr. A., 2003; 1003: 101–111. https://doi.org/10.1016/S0021-9673(03)00846-X
  • 23. Simoes-Cardoso J.C., Yoshimoto N., Yamamoto S. Thermodynamic analysis of polyphenols retention in polymer resin chromatography by van’t Hoff plot and isothermal titration calorimetry, J. Chromatogr. A., 2019; 1608: 460405. https://doi.org/10.1016/j.chroma.2019.460405
  • 24. Roush D.J., Hwang L.Y., Antia F.D. Influence of mobile phase composition and thermodynamics on the normal phase chromatography of echinocandins, J. Chromatogr. A, 2005; 1098: 55–65. https://doi.org/10.1016/j.chroma.2005.08.042
  • 25. Punčochářová J., Kříž J., Vodička L., Průšová D. Influence of mobile phase composition and nature of sample on retention data from high-performance liquid chromatography, J. Chromatogr. A, 1980; 191: 81–94. https://doi.org/10.1016/S0021-9673(00)86366-9
  • 26. Engelhardt H., Kilmek-Turek A., Dzido T.H. The effect of modifier on selectivity in reversed-phase high performance liquid chromatography, LCGC Europe, 2008: 21: 33–42.
  • 27. Sándi A., Nagy M., Szepesy L. Characterization of reversed-phase columns using the linear free energy relationship: III. Effect of the organic modifier and the mobile phase composition, J. Chromatogr. A, 2000; 893: 215–234. https://doi.org/10.1016/S0021-9673(00)00733-0
  • 28. Miyabe K. Influence of mobile phase composition on surface diffusion in reversed-phase liquid chromatography, J. Chromatogr. A, 2008; 1194: 184–191. https://doi.org/10.1016/j.chroma.2008.04.054
  • 29. Matsushita C., Tsukagoshi K., Tsuchiya K., Yamashita K., Murata M. Investigation of the separation efficiency of tube radial distribution chromatography with stationary outer phase using the van Deemter equation, Chromatographia, 2020; 83: 287–292. https://doi.org/10.1007/s10337-019-03837-3.
  • 30. Hetzel T., Loeker D., Teutenberg T. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis, J. Sep. Sci. 2016; 39: 3889–3897. https://doi.org/10.1002/jssc.201600775.
  • 31. Kwan-Young K., In Su L. and In-Ho K. Analysis of R-limonene separation in RP-HPLC (Reversed-Phase High-Performance Liquid Chromatography) by moment method and Van Deemter equation, Biotechnol. Bioprocess Eng., 2015; 20: 585–592. https://doi.org/10.1007/s12257-014-0573-8.
  • 32. Guichen P., Weiping H., Quanquan S., Hongjing D., Xia G., Jinmei L. and Hui X. Preparation of monolithic silica and polymer capillary columns with ultrahigh column efficiencies and comparisons between van Deemter plots of alkylbenzenes on these two kinds of columns, J. Chromatogr. Sci, 2022; 60: 7–15. https://doi.org/10.1093/chromsci/bmab027.
  • 33. Zhanchen G., Jilei P., Zhen L. On the journey exploring nanoscale packing materials for ultra-efficient liquid chromatographic separation, J. Chromatogr. Open., 2022; 100033. https://doi.org/10.1016/j.jcoa.2022.100033.
  • 34. Kiseleva M.G., Nesterenko P.N. Phenylaminopropyl silica – a new specific stationary phase for high-performance liquid chromatography of phenols, J. Chromatogr. A, 2000; 898: 23–34. https://doi.org/10.1016/S0021-9673(00)00872-4.
  • 35. Fakioglu M. and Kalpakl Y. Mechanism and behavior of caffeine sorption: affecting factors, RSC Adv., 2022; 12: 26504. https://doi.org/10.1039/d2ra04501j.
  • 36. Blackwell J.A., Stringham R.W. Temperature effects on selectivity using carbon dioxide-based mobile phases on silica-based packed columns near the mixture critical point, Chromatographia, 1997; 44: 521–528.
  • 37. Jandera P., Colin H., Guiochon G. Interaction indexes for prediction of retention in reversed-phase liquid chromatography, Anal. Chem., 1982; 54(3): 435–441.
  • 38. Baeza-Baeza J.J., Dávila Y., Fernández-Navarro J.J., García-Álvarez-Coque M.C. Measurement of the elution strength and peak shape enhancement at increasing modifier concentration and temperature in RPLC, Anal. Bioanal. Chem., 2012; 404(10): 2973–2984. https://doi.org/10.1007/s00216-012-6387-7.
  • 39. Teutenberg T. Potential of high temperature liquid chromatography for the improvement of separation efficiency—A review, Analytica Chimica Acta, 2009; 643: 1–12. https://doi.org/10.1016/j.aca.2009.04.008.
  • 40. Leonid D., Asnin M.V., Stepanova. Van’t Hoff analysis in chiral chromatography, J. Sep. Sci., 2018; 41(6): 1319–1337. https://doi.org/10.1002/jssc.201701264.
  • 41. Roy Shu-ying H., Hui-min Y., Yu-qiong P. and Yu-mei C. Selectivity-column temperature relationship as a new strategy in predicting separation of structural analogues in HPLC by using different stationary phases, RSC, 2015; 5: 62686–62696. https://doi.org/10.1039/C5RA09524G.
  • 42. Sentell K.B., Ryan N.I., Henderson A.N. Temperature and solvation effects on homologous series selectivity in reversed phase liquid chromatography, Anal. Chim. Acta, 1995; 307: 235–215.
  • 43. Shen Y., Yang Y.J. and Lee M.L. Fundamental considerations of packed-capillary GC, SFC, and LC using nonporous silica particles, Anal. Chem. 1997; 69: 628–635. https://doi.org/10.1021/AC960657W.
  • 44. Andersen J.E.T., Mukami H.W., Maina I.W. Evaluation of the van Deemter equation in terms of open-ended flow to chromatography, J. Sep. Sci., 2020; 43(16): 3165–3376. https://doi.org/10.1002/jssc.202000413.
  • 45. Jandera P. Stationary and mobile phases in hydrophilic interaction chromatography: A review, Anal. Chim. Acta, 2011; 692: 1–25. https://doi.org/10.1016/j.aca.2011.02.047.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-082e13ed-7c88-47ff-86b9-9daaecbacb21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.