PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alternative, Direct Synthesis Method of the Ceramic Solid Solutions Based on BaTiO3 Through a High Energy Ball Milling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polycrystalline samples BaTiO3 and the solid solutions Ba0.9 Sr0.1 TiO3, 0.9 Sr0.1 Ti0.9 Sn0.1 O3, Ba0.9 Sr0.1 Ti0.8 Sn0.2 O3 were obtained by means of a mechanochemical treatment based on the high-energy ball milling technique and next a high temperature solid state reaction method. The influence of synthesis condition on microstructural, dielectric and ferroelectric properties of obtained solid solutions were investigated. The structure and morphology of the investigated samples were characterized by an X-ray diffraction (XRD) and scanning electron microscopy (SEM). The characterization of electrical properties of the ceramics within the temperature range from –130°C to 250°C were performed by means of a dielectric spectroscopy method at the frequency ranging from 0.1 Hz to10 MHz. The diffusion of the paraelectric – ferroelectric phase transition and dielectric relaxation for ceramic samples are described.
Twórcy
autor
  • Pedagogical University, Institute of Technology, 2 Podchorążych Str., 30-084 Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska Str., 31-155 Kraków, Poland
  • Pedagogical University, Institute of Technology, 2 Podchorążych Str., 30-084 Kraków, Poland
autor
  • Gdańsk University of Technology, Department of Materials Engineering and Welding, Faculty of Mechanical Engineering, 11/12 G.Narutowicza Str., 80-233, Gdańsk, Poland
  • Gdańsk University of Technology, Department of Materials Engineering and Welding, Faculty of Mechanical Engineering, 11/12 G.Narutowicza Str., 80-233, Gdańsk, Poland
Bibliografia
  • [1] M. E. Lines, A. M. Glass, Principles and applications of ferroelectrics and related materials, Claredon Press, Oxford, (2001).
  • [2] J. F. Scott, Applications of modern ferroelectrics, Science 315, 954-959 (2007).
  • [3] K. Tkacz-Śmiech, A. Koleżyński, W. S. Ptak, Ferroelectrics 237, 57-64 (2000).
  • [4] K. Tkacz-Śmiech, A. Koleżyński, W. Jastrzębski, Ferroelectrics 315, 73-81 (2005).
  • [5] M. Gabryś, C. Kajtoch, W. Bąk, B. Handke, F. Starzyk, Ferroelectrics 417, 110-117 (2011).
  • [6] C. Kajtoch, W. Bąk, B. Garbarz-Glos, D. Ziętek, M. Gabryś, K. Stanuch, T. Czeppe, Ferroelectrics 464, 15-20 (2014).
  • [7] Y. Tsur, T. D. Dunbar, C. A. Randall, J. Electroceram. 7, 25-34 (2001).
  • [8] L. R. Prado, N. S. de Resende, R. S. Silva, S. M. S. Egues, G. R. Salazar-Banda, Chemical Engineering and Processing 103, 12-20 (2016).
  • [9] G. H. Haertling, Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 82 (4), 797-818 (1999).
  • [10] H. X. Bai, X. H. Liu, Materials Letters 100, 1-3, (2013).
  • [11] H. Kageyama, Y. Oaki, Y. Takezawa, T. Suzuki, H. Imai, Journal of the Ceramic Society of Japan 121 (1412), 388-392 (2013).
  • [12] W. W. Wang, L. X. Cao, W. Liu, G. Su, W. X. Zhang, Ceramics International 39 (6), 7127-7134 (2013).
  • [13] A. V. Zanfir, G. Voicu, S. I. Jinga, E. Vasile, V. Ionita, Ceramics International 42 (1), 1672-1678 (2016).
  • [14] P. Dulian, W. Bak, K. Wieczorek-Ciurowa, C. Kajtoch, Materials Science-Poland 31 (3), 462-470 (2013).
  • [15] B. D Stojanovic, Journal of Materials Processing Technology 143, 78-81 (2003).
  • [16] L. B. Kong, T. S. Zhang, J. Ma, F. Boey, Progress in Materials Science 53 (2), 207-322 (2008).
  • [17] P. Balaz, M. Achimovicova, M. Balaz, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chemical Society Reviews 42 (18), 7571-7637 (2013).
  • [18] T. Sundararajan, S. B. Prabu, S. M. Vidyavathy, Materials Research Bulletin 47 (6), 1448-1454 (2012).
  • [19] R. Ashiri, RSC Advances 6 (21), 17138-17150 (2016).
  • [20] B. D. Stojanovic, A. Z. Simoes, C. O. Paiva-Santos, C. Jovalekic, V. V. Mitic, J. A. Varela, Journal of the European Ceramic Society, 25 (12), 1985-1989 (2005).
  • [21] V. V. Sydorchuk, V. A. Zazhigalov, S. V. Khalameida, K. Wieczorek-Ciurowa, Inorganic Materials 46 (10), 1126-1130 (2010).
  • [22] J. M. Xue, J. Wang, D. M. Wan, Journal of the American Ceramic Society 83 (1), 232-234 (2000).
  • [23] W. Bąk, P. Dulian, B. Garbarz-Glos, C. Kajtoch, K. Wieczorek-Ciurowa, Ferroelectrics 485, 89-94 (2015).
  • [24] P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glasses, 13, 171 (1972).
  • [25] M. P. Dasari, K. Sambasiva Rao, P. Murali Krishna, G. Gopala Krishna, Acta Physica Polonica A 119 (3), 387-394 (2011).
  • [26] H. Beltra, M. Prades, N. Maso, E. Cordoncillo, A. R. West, Journal of the American Ceramic Society, 94 (9), 2951-2962 (2011).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0827bee9-2178-49fd-b947-1f27b860e311
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.