PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis of heavy machinery moving on weak subsoil. 3D FEM model vs. analytical models

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza stateczności ciężkich maszyn budowlanych poruszających się˛ po podłożu słabonośnym. Model 3D MES vs. modele analityczne
Języki publikacji
EN
Abstrakty
EN
In this paper, the authors present an extension of the scope of the previously conducted research to the full three-dimensional computer simulation (using the finite element method), which takes into account the interaction between: heavy caterpillar tracks system – working platform – weak subsoil. The article presents a computer model considering two caterpillars, resting on elastic-plastic sub-soil, with standard Mohr-Coulomb yield conditions, allowing for computer simulation of the behavior of the system up to achievement of ultimate limit state. The results of the above model are treated as the reference for a simplified Analytical Models of estimating the limit state, which might be used in design procedures. In turn, these Analytical Models are enhancements of previously presented one. The most important results concluding form the Analytical Model are simple interaction formulas, in the space of moments acting on the machine-subsoil system, limiting a domain of safety in given soil conditions.
PL
W artykule autorzy przedstawiają rozszerzenie zakresu dotychczas przeprowadzonych badan o pełną trójwymiarową symulację komputerową (metodą elementów skończonych), która uwzględnia interakcję między: gąsienicowym układem jezdnym – platformą roboczą – podłożem gruntowym. W artykule przedstawiono model komputerowy uwzgledniający układ jezdny dwóch gąsienic maszyny budowlanej znajdujących się na podłożu gruntowym, sprężysto-plastycznym, przy warunkach plastyczności Mohra-Coulomba, pozwalający na komputerową symulację zachowania się układu aż do osiągniecia stanu granicznego nośności. Wyniki powyższego modelu komputerowego traktuje się jako odniesienie dla uproszczonych Modeli Analitycznych szacowania stanu granicznego, które mogą być wykorzystane w procedurach projektowych. Najważniejszymi wynikami wynikającymi z Modelu Analitycznego są proste krzywe interakcji, w przestrzeni momentów działających na układ gąsienicowa maszyna budowlana – podłoże gruntowe, ograniczające zakres działania przy danych parametrach podłoża gruntowego.
Rocznik
Strony
649--665
Opis fizyczny
Bibliogr 31 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, ul. Warszawska 24, 31-155 Krakow, Poland
  • University of Agriculture in Krakow, Department of Rural Building, Al. Mickiewicza 24/28, 59-130 Krakow, Poland
Bibliografia
  • [1] H.J. Burd and S. Frydman, “Bearing capacity of plane-strain footings on layered soils”, Canadian Geotechnical Journal, vol. 34, no. 2, pp. 241–253, 1997, doi: 10.1139/cgj-34-2-241.
  • [2] R.L. Michałowski and L. Shi, “Bearing capacity of footings over two-layer Foundation soils”, Journal of Geotechnical Engineering, vol. 121, no. 5, pp. 421–428, 1995, doi: 10.1061/(ASCE)0733-9410(1995)121:5(421).
  • [3] M. Chwała, W. Puła, and M. Kawa, “Probabilistic bearing capacity evaluation for two-layered soil”, in Proceedings of the 7th International Symposium on Geotechnical Safety and Risk. ISGSR, 2019, pp. 297–302, doi: 10.3850/978-981-11-2725-0-IS10-4-cd.
  • [4] M. Chwała and W. Puła, “Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters”, PLoS ONE, vol. 15, no. 4, 2020, doi: 10.1371/journal.pone.0231992.
  • [5] Ł. Zaskórski, W. Puła, and D.V. Griffiths, “Bearing capacity assessment of a shallow foundation on a two layered”, in Geo-Risk 2017 – Reston: American Society of Civil Engineers. ASCE, 2017, pp. 468–477, doi: 10.1061/9780784480724.042.
  • [6] M.J. Kenny and K.Z. Andrawes, “The bearing capacity of footings on a sand layer over lying soft clay”, Geotechnique, vol. 47, no. 2, pp. 339-345, 1997, doi: 10.1680/geot.1997.47.2.339.
  • [7] S.S. Eshkevari, A.J. Abbo, and G. Kouretzis, “Bearing capacity of strip footings on sand over clay”, Canadian Geotechnical Journal, vol. 56, no. 5, pp. 699–709, 2018, doi: 10.1139/cgj-2017-0489.
  • [8] Z. Mróz and A. Drescher, “Limit plasticity approach to some cases of flow of bulk solids”, Journal of Engineering for Industry, vol. 91, no. 2, pp. 357–364, 1969, doi: 10.1115/1.3591573.
  • [9] P. Purushothamaraj, B.K. Ramiah, and K.N. Venkatakrishna Rao, “Bearing capacity of strip footings in two layered cohesive-friction soils”, Canadian Geotechnical Journal, vol. 11, no. 1, pp. 32–45, 1974, doi: 10.1139/t74-003.
  • [10] V. Khatri, J. Kumar, and S. Akhtar, “Bearing capacity of foundations with inclusion of dense sand layer over loose sand strata”, International Journal of Geomechanics, vol. 17, no. 10, pp. 601–618, 2017, doi: 10.1061/(ASCE)GM.1943-5622.0000980.
  • [11] M. Huang and H. Qin, “Upper-bound multi-rigid-block solutions for bearing capacity of two-layered soils”, Computers and Geotechnics, vol. 36, no. 3, pp. 525–529, 2009, doi: 10.1016/j.compgeo.2008.10.001.
  • [12] W.F. Chen and H.L. Davidson, “Bearing capacity determination by limit analysis”, Journal of the Soil Mechanics and Foundations Division, vol. 99, no. 6, pp. 433–449, 1973, doi: 10.1061/JSFEAQ.0001887.
  • [13] D.M. Dewaikar and B.G. Mohapatra, “Computation of bearing capacity factor N -Prandtl’s mechanism”, Soils and Foundations, vol. 43, no. 3, pp. 1–10, 2003, doi: 10.3208/sandf.43.3_1.
  • [14] E. Detournay and A. Drescher, “Limit load in translational materials for associated and non-associated materials”, Géotechnique, vol. 43, no. 3, pp. 443–456, 1993, doi: 10.1680/geot.1993.43.3.443.
  • [15] H. Michalak and P. Przybysz, "Subsoil movements forecasting using 3D numerical modeling", Archives of Civil Engineering, vol. 67, no. 1, pp. 367–385, 2021, doi: 10.24425/ace.2021.136478.
  • [16] A.J. Valsangkar and G.G. Meyerhof, “Experimental study of punching coefficients and shape”, Canadian Geotechnical Journal, vol. 16, no. 4, pp. 802–805, 1979, doi: 10.1139/t79-086.
  • [17] R.L. Michalowski, “Limit analysis of weak layers under embankments”, Soils and foundations, vol. 33, no. 1, pp. 155–168, 1993, doi: 10.3208/sandf1972.33.155.
  • [18] M. Chwała and M. Kawa, “Random failure mechanism method for assessment of working platform bearing capacity with a linear trend in undrained shear strength”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 13, no. 6, pp. 1513–1530, 2021, doi: 10.1016/j.jrmge.2021.06.004.
  • [19] A. Johari, A. Sabzi, and A. Gholaminejad, “Reliability analysis of differentia settlement of strip footings by stochastic response surface method”, Iranian Journal of Science and Technology, vol. 43, no. 1, pp. 37–48, 2019, doi: 10.1007/s40996-018-0114-3.
  • [20] A. Johari, S. M. Hosseini, and A. Keshavarz, “Reliability analysis of seismic bearing capacity of strip footing by stochastic slip lines method”, Computers and Geotechnics, vol. 91, pp. 203–217, 2017, doi: 10.1016/j.compgeo.2017.07.019.
  • [21] A. Urbański, A. Truty, and M. Richter, “Stability of drilling rigs moving on a weak subsoil. Theoretical formulation and selected case studies”, Engineering Structures, vol. 184, pp. 524–534, 2019, doi: 10.1016/j.engstruct.2019.01.111.
  • [22] A. Urbański and M. Richter, “Stability analysis of heavy machinery moving on weak subsoil. Analytical solution”, Engineering Structures, vol. 241, 2021, doi: 10.1016/j.engstruct.2021.112152.
  • [23] A. Urbański and M. Richter, “Stability analysis of drilling rigs moving on a weak subsoil. Selected case studies”, Archives of Civil Engineering, vol. 66, no. 2, pp. 303–319, 2020, doi: 10.24425/ace.2020.131811.
  • [24] BAUER Maschinen GmbH, “BG 20 H. Großdrehbohrgerät. Rotary Drilling Rig”, 2015.
  • [25] P. Wriggers, Computational contact mechanics. Springer, 2006.
  • [26] M. Kuczma, “A viscoelastic-plastic model for skeletal structural systems with clearances”, Computer Assisted Mechanics and Engineering Sciences, vol. 6, pp. 83–106, 1999.
  • [27] Ch. Su, et al., “Combining finite element and analytical methods to contact problems of 3D structure on soft foundation”, Mathematical Problems in Engineering, vol. 2020, 2020, doi: 10.1155/2020/8827681.
  • [28] EN 1997-1 Eurocode 7: Geotechnical design – Part 1. ISO, 2004.
  • [29] J.E. Bowles, Foundations analysis and design. McGraw-Hill Publishing Company, New York, 1996.
  • [30] Z. Szypcio and K. Dołżyk, “The bearing capacity of layered subsoil”, Studia Geotechnica et Mechanica, vol. 28, no. 1, pp. 45–60, 2006.
  • [31] “ZSoil Manual”. [Online]. Available: https://zsoil.com/zsoil-manual/. [Accessed: 25 Apr. 2023].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0824cce2-2b4c-471e-a6d8-672a5bef4a56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.