PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remaining useful life prediction of a lithium-ion battery based on a temporal convolutional network with data extension

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unmanned underwater vehicles are typically deployed in deep sea environments, which present unique working conditions. Lithium-ion power batteries are crucial for powering underwater vehicles, and it is vital to accurately predict their remaining useful life (RUL) to maintain system reliability and safety. We propose a residual life prediction model framework based on complete ensemble empirical mode decomposition with an adaptive noise-temporal convolutional net (CEEMDAN-TCN), which utilizes dilated causal convolutions to improve the model’s ability to capture local capacity regeneration and enhance the overall prediction accuracy. CEEMDAN is employed to denoise the data and prevent RUL prediction errors caused by local regeneration, and feature expansion is utilized to extend the temporal dimension of the original data. The NASA and CALCE battery capacity datasets are used as input to train the network framework. The output is the current predicted residual capacity, which is compared with the real residual battery capacity. The MAE, RMSE and RE are used as the evaluation indexes of the RUL prediction performance. The proposed network model is verified on the NASA and CACLE datasets. The evaluation results show that our method has better life prediction performance. At the same time, it is proved that both feature expansion and modal decomposition can improve the generalization ability of the model, which is very useful in industrial scenarios.
Rocznik
Strony
105--117
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • Institute of Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
autor
  • Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • University of the Chinese Academy of Sciences, Beijing 100049, China
  • Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • University of the Chinese Academy of Sciences, Beijing 100049, China
Bibliografia
  • [1] Bai, S., Kolter, J.Z. and Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, arXiv 1803.01271.
  • [2] Cao, J., Li, Z. and Li, J. (2019). Financial time series forecasting model based on CEEMDAN and LSTM, Physica A: Statistical Mechanics and Its Applications 519: 127-139.
  • [3] Cao, Y., Ding, Y., Jia, M. and Tian, R. (2021). A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings, Reliability Engineering & System Safety 215: 107813.
  • [4] Chen, D., Hong, W. and Zhou, X. (2022). Transformer network for remaining useful life prediction of lithium-ion batteries, IEEE Access 10: 19621-19628.
  • [5] He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770-778.
  • [6] Hong, S., Yue, T. and Liu, H. (2022). Vehicle energy system active defense: A health assessment of lithium-ion batteries, International Journal of Intelligent Systems 37(12): 10081-10099.
  • [7] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C. and Liu, H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454(1971): 903-995.
  • [8] Li, L., Li, Y., Mao, R., Li, L., Hua, W. and Zhang, J. (2023). Remaining useful life prediction for lithium-ion batteries with a hybrid model based on TCN-GRU-DNN and dual attention mechanism, IEEE Transactions on Transportation Electrification 9(3): 4726-4740.
  • [9] Li, X., Zhang, L., Wang, Z. and Dong, P. (2019). Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks, Journal of Energy Storage 21: 510-518.
  • [10] Park, K., Choi, Y., Choi, W.J., Ryu, H.-Y. and Kim, H. (2020). LSTM-based battery remaining useful life prediction with multi-channel charging profiles, IEEE Access 8: 20786-20798.
  • [11] Pecht, M. (2017). Battery data set: CALCE, Battery Research Data, CALCE Battery Research Group, University of Maryland, College Park, https://calce.umd.edu/data#CS2.
  • [12] Ren, L., Zhao, L., Hong, S., Zhao, S., Wang, H. and Zhang, L. (2018). Remaining useful life prediction for lithium-ion battery: A deep learning approach, IEEE Access 6: 50587-50598.
  • [13] Saha, B. and Goebel, K. (2007). Battery data set: NASA, NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, https://www.nasa.gov/intelligent-systems-division/#battery.
  • [14] Salimans, T. and Kingma, D.P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks, Advances in Neural Information Processing Systems 29(9): 901-909.
  • [15] Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849-862, DOI: 10.1515/amcs-2015-0061.
  • [16] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting, Journal of Machine Learning Research 15(1): 1929-1958.
  • [17] Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P. (2011). A complete ensemble empirical mode decomposition with adaptive noise, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, pp. 4144-4147.
  • [18] Wu, Z. and Huang, N.E. (2009). Ensemble empirical mode decomposition: A noise-assisted data analysis method, Advances in Adaptive Data Analysis 1(01): 1-41.
  • [19] Ye, R. and Dai, Q. (2018). A novel transfer learning framework for time series forecasting, Knowledge-Based Systems 156: 74-99.
  • [20] Zhang, Y., Xiong, R., He, H. and Pecht, M.G. (2018). Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries, IEEE Transactions on Vehicular Technology 67(7): 5695-5705.
  • [21] Zhou, B., Cheng, C., Ma, G. and Zhang, Y. (2020). Remaining useful life prediction of lithium-ion battery based on attention mechanism with positional encoding, IOP Conference Series: Materials Science and Engineering, 895: 012006.
  • [22] Zhou, Y. and Huang, M. (2016). Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model, Microelectronics Reliability 65: 265-273.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0820324e-d3dc-412c-a75d-8b143ac260b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.