PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aluminium oxide (Al22O3)-few layer graphene (FLG) reinforced aluminium hybrid composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the microstructural and mechanical properties of few layer graphene (FLG, 0.1 to 5 wt.%) and aluminium oxide (Al22O3, 4 to 20 wt.%) reinforced Al6061 matrix composites prepared via mechanical alloying (MA), uniaxial pressing and pressureless sintering. The effects of the amounts of Al22O3 and FLG were studied. MA was carried out at 300 rpm for 3 h in a planetary ball mill in argon atmosphere. The mechanically alloyed (MAed) powders were compacted via uniaxial pressing (400 MPa) and sintering (620°C, 2 h). The microstructural and mechanical properties of the Al-xAl22O3-yFLG powders and bulk samples were investigated via X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), the Archimedes’ method and a hardness test. In the XRD analysis, the aluminium carbide (Al4C3) phase was not detected. The SEM, LM micrographs and EDS results show that the produced composites have a homogeneous structure. Based on the Archimedes’ method, the densification rates of the reinforced samples were higher than the unreinforced sample. The Al22O3-3FLG sample exhibited the highest relative density, 99.25%. According to the hardness measurements, the highest hardness value was 87.28 HV for the Al22O3-1FLG composite and increased twofold compared to Al6061.
Rocznik
Strony
72--78
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Yıldız Technical University, Metallurgy and Materials Engineering Department, 34210, Istanbul, Turkey
  • Bursa Technical University, Metallurgy and Materials Engineering Department, 16310, Yıldırım, Turkey
  • Yıldız Technical University, Metallurgy and Materials Engineering Department, 34210, Istanbul, Turkey
  • Yıldız Technical University, Chemical Engineering Department, 34210, Istanbul, Turkey
  • Bursa Technical University, Metallurgy and Materials Engineering Department, 16310, Yıldırım, Turkey
  • Yıldız Technical University, Metallurgy and Materials Engineering Department, 34210, Istanbul, Turkey
Bibliografia
  • [1] Bastwros M., Kim G.-Y., Zhu C., Zhang K., Wang S., Tang X. et al., Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Composites Part B: Engineering 2014, 60, 111-8.
  • [2] Can Şenel M., Gürbüz M., Investigation on mechanical properties and microstructures of aluminum hybrid composites reinforced with Al2O3/GNPs binary particles, Archives of Metallurgy and Materials 2021, 97-106-97.
  • [3] Cabeza M., Feijoo I., Merino P., Pena G., Pérez M., Cruz S. et al., Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite, Powder Technology 2017, 321, 31-43.
  • [4] Akçamlı N., Küçükelyas B., Kaykılarlı C., Uzunsoy D., Investigation of microstructural, mechanical and corrosion properties of graphene nanoplatelets reinforced Al matrix composites, Materials Research Express 2019, 6(11), 115627.
  • [5] Avedesian M.M., Baker H., ASM Specialty Handbook: Magnesium and Magnesium Alloys: ASM International, 1999.
  • [6] Kumar G.V., Rao C., Selvaraj N., Studies on mechanical and dry sliding wear of Al6061-SiC composites, Composites Part B: Engineering 2012, 43(3), 1185-1191.
  • [7] Matli P.R., Fareeha U., Shakoor R.A., Mohamed A.M.A., A comparative study of structural and mechanical properties of Al-Cu composites prepared by vacuum and microwave sintering techniques, Journal of Materials Research and Technology, 2018, 7(2), 165-72.
  • [8] Abramovich H., Stability and Vibrations of Thin-walled Composite Structures, Woodhead Publishing 2017.
  • [9] Sivakumar S., Thimmappa S.K., Golla B.R., Corrosion behavior of extremely hard Al-Cu/Mg-SiC light metal alloy composites. Journal of Alloys and Compounds 2018, 767, 703-711.
  • [10] Koczak M.J., Khatri S.C., Allison J.E., Bader M.G., Metal-matrix Composites for Ground Vehicle, Aerospace, and industrial Applications, Butterworth-Heinemann 1993.
  • [11] Mohapatra J., Nayak S., Mahapatra M.M., Mechanical and tribology properties of Al-4.5% Cu-5% TiC metal matrix composites for light-weight structures, International Journal of Lightweight Materials and Manufacture 2020, 3(2), 120-126.
  • [12] Raju P.V.K., Rajesh S., Rao J.B., Bhargava N., Tribological behavior of Al-Cu alloys and innovative Al-Cu metal matrix composite fabricated using stir-casting technique, Materials Today: Proceedings 2018, 5(1), 885-896.
  • [13] Gireesh C.H., Prasad K.D., Ramji K., Vinay P., Mechanical characterization of aluminium metal matrix composite reinforced with aloe vera powder, Materials Today: Proceedings 2018, 5(2), 3289-97.
  • [14] Ramesh C., Khan A.A., Ravikumar N., Savanprabhu P., Prediction of wear coefficient of Al6061-TiO2 composites, Wear 2005, 259(1-6), 602-608.
  • [15] Kumar G.V., Rao C., Selvaraj N., Bhagyashekar M., Studies on Al6061-SiC and Al7075-Al2O3 metal matrix composites, Journal of Minerals & Materials Characterization & Engineering. 2010, 9(1), 43-55.
  • [16] Ezatpour H.R., Sajjadi S.A., Sabzevar M.H., Huang Y., Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting, Materials & Design 2014, 55, 921-928.
  • [17] Zamani S., Won J.S., Salim M., AlAmer M., Chang C.-W., Kumar P. et al., Ultralight graphene/graphite hybrid fibers via entirely water-based processes and their application to density-controlled, high performance composites, Carbon 2021, 173, 880-890.
  • [18] Gao X., Yue H., Guo E., Zhang S., Wang B., Guan E. et al., Preparation and tribological properties of homogeneously dispersed graphene-reinforced aluminium matrix composites, Materials Science and Technology 2018, 34(11), 1316-1322.
  • [19] Yang W., Zhao Q., Xin L., Qiao J., Zou J., Shao P. et al., Microstructure and mechanical properties of Graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method, Journal of Alloys and Compounds 2018, 732, 748-758.
  • [20] Cotul U., Parmak E., Kaykilarli C., Saray O., Colak O., Uzunsoy D., Development of high purity, few-layer graphene synthesis by electric arc discharge technique, Acta Physica Polonica A. 2018, 134, 289-291.
  • [21] Asgharzadeh H., Sedigh M., Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide, Journal of Alloys and Compounds 2017, 728, 47-62.
  • [22] Daha M., Nassef B.G., Nassef M., Mechanical and tribological characterization of a novel hybrid aluminum/Al2O3/RGO composite synthesized using powder metallurgy, Journal of Materials Engineering and Performance 2021, 1-9.
  • [23] Omrani E., Moghadam A.D., Kasar A.K., Rohatgi P., Menezes P.L., Tribological performance of Graphite nanoplatelets reinforced Al and Al/Al2O3 self-lubricating composites, Materials 2021, 14(5), 1183.
  • [24] Kumar H.P., Xavior M.A., Fatigue and wear behavior of Al6061-graphene composites synthesized by powder metallurgy, Transactions of the Indian Institute of Metals 2016, 69(2), 415-419.
  • [25] Pournaderi S., Akhlaghi F., Wear behaviour of Al6061- Al2O3 composites produced by in-situ powder metallurgy (IPM), Powder Technology 2017, 313, 184-190.
  • [26] Mercado-Lemus V.H., Gomez-Esparza C.D., Díaz-Guillén J.C., Mayén-Chaires J., Gallegos-Melgar A., Arcos-Gutierrez H. et al., Wear dry behavior of the Al-6061-Al2O3 composite synthesized by mechanical alloying, Metals 2021, 11(10), 1652.
  • [27] Boppana S.B., Dayanand S., Murthy B.V., Nagaral M, Telagu A., Kumar V. et al., Development and mechanical characterisation of Al6061-Al2O3-graphene hybrid metal matrix composites, Journal of Composites Science 2021, 5(6), 155.
  • [28] Soni S.K., Ganatra D., Mendiratta P., Reddy C., Thomas B., Microstructure and mechanical characterization of Al2O3/graphene reinforced Al6061 based hybrid nanocomposites, Metals and Materials International 2022, 28(2), 545-555.
  • [29] Kaftelen H., Ünlü N., Göller G., Öveçoğlu M.L., Henein H., Comparative processing-structure-property studies of Al-Cu matrix composites reinforced with TiC particulates, Composites Part A: Applied Science and Manufacturing 2011, 42(7), 812-824.
  • [30] Balaraj V., Kori N., Nagaral M., Auradi V., Microstructural evolution and mechanical characterization of micro Al2O3 particles reinforced Al6061 alloy metal composites, Materials Today: Proceedings 2021.
  • [31] Al-Mosawi B., Wexler D., Calka A., Characterization and mechanical properties of α-Al2O3 particle reinforced aluminium matrix composites, synthesized via uniball magneto-milling and uniaxial hot pressing, Advanced Powder Technology 2017, 28(3), 1054-1064.
  • [32] Prakash T., Sivasankaran S., Sasikumar P., Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminium sheet metal reinforced with $${{\rm Al} _{2}{\rm O} _ {3}/0.5\,{\rm Gr}} $$ Al2O3/0.5 Gr hybrid surface nanocomposite, Arabian Journal for Science and Engineering 2015, 40(2), 559-569.
  • [33] Bharath V., Nagaral M., Auradi V., Kori S., Preparation of 6061Al-Al2O3 MMC's by stir casting and evaluation of mechanical and wear properties, Procedia Materials Science 2014, 6, 1658-1667.
  • [34] Kaykılarlı C., Uzunsoy D., Parmak E.D.Ş., Fellah M.F., Çakır Ö.Ç., Boron and nitrogen doping in graphene: an experimental and density functional theory (DFT) study, Nano Express 2020, 1(1), 010027.
  • [35] Wu Y., Wang B., Ma Y., Huang Y., Li N., Zhang F. et al., Efficient and large-scale synthesis of few-layered Graphene using an arc-discharge method and conductivity studies of the resulting films, Nano Research 2010, 3(9), 661-669.
  • [36] Sun J., Zhao J., Huang Z., Yan K., Chen F., Jian Y. et al., Preparation and properties of multilayer graphene reinforced binderless TiC nanocomposite cemented carbide through two-step sintering, Materials & Design 2020, 188, 108495.
  • [37] Nieto A., Lahiri D., Agarwal A., Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering, Materials Science and Engineering: A. 2013, 582, 338-346.
  • [38] Wang X., Zhao J., Cui E., Tian X., Sun Z., Effect of interfacial structure on mechanical properties of graphene reinforced Al2O3-WC matrix ceramic composite, Nanomaterials 2021, 11(6), 1374.
  • [39] Wang J., Guo L.-N., Lin W.-M., Chen J., Liu C.-L., Zhang S. et al., Effect of the graphene content on the microstructures and properties of graphene/aluminum composites, New Carbon Materials 2019, 34(3), 275-285.
  • [40] Akçamlı N., Şenyurt B., B4C particulate-reinforced Al-8.5 wt.% Si-3.5 wt.% Cu matrix composites: powder metallurgical fabrication, age hardening, and characterization, Ceramics International 2021, 47(5), 6813-6826.
  • [41] Yazdani B., Porwal H., Xia Y., Yan H., Reece M.J., Zhu Y., Role of synthesis method on microstructure and mechanical properties of graphene/carbon nanotube toughened Al2O3 nanocomposites, Ceramics International 2015, 41(8), 9813-9822.
  • [42] Mahmoud T.S., El-Kady E.-S.Y., Al-Shihiri A.S.M., Corrosion behaviour of Al/SiC and Al/Al2O3 nanocomposites, Materials Research 2012, 15(6), 903-910.
  • [43] Shanmughasundaram P., Investigation on the wear behaviour of eutectic Al-Si Alloy-Al2O3-graphite composites fabricated through squeeze casting, Materials Research 2014, 17(4), 940-946.
  • [44] Elshina L., Muradymov R., Kvashnichev A., Vichuzhanin D., Molchanova N., Pankratov A., Synthesis of new metal-matrix Al-Al2O3-graphene composite materials, Russian Metallurgy (Metally) 2017, 2017(8), 631-641.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-081f64be-469c-4a5a-ae7b-63da33b4ef77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.