PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent matching technique for flexible antennas

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Inteligentna technologia dopasowywania dla elastycznych anten
Języki publikacji
EN
Abstrakty
EN
Flexible antennas have revolutionized the wireless communication asintegral componentsof modern smart devices. Their unique propertiesare design flexibility, enhanced performance, and seamless implementation in smart devices. However, when designing antennas, multiple conflicting objectives often need to be considered simultaneously. Incorporating artificial neural networks into optimization strategies has shown promising resultsin antenna design problems. Neural networks canadapt to different and changeable requirements and constraints. That is why they arevaluable toolsfor customizing antennas to specific operating conditions.The utilization of artificial neural networks for the design of flexible antennas enables researchers to expand the design space, optimize antenna characteristics with greater efficiency, and identify innovative solutions that may not be apparent through traditional design methods.In this study, the authors propose to determine requiredparameters and characteristics of flexible antennas by using Artificial Intelligence techniques, namely fuzzy logic, neural networks, and genetic algorithms. Amatching technique based on neural networkfor designing flexible antennas has been elaborated. A neural network was developed. To train the neural network,several samples of flexible antenna were manufactured and tested.The developed neural network was simulated. Finally, the obtained flexible antenna was tested.
PL
Elastyczne anteny zrewolucjonizowały komunikację bezprzewodową jako integralny element nowoczesnych inteligentnych urządzeń.Ich unikalne właściwości obejmują większą elastyczność projektowania, zwiększoną wydajność i bezproblemowe wdrażanie w inteligentnych urządzeniach.Jednak przy projektowaniu anten często konieczne jest jednoczesne uwzględnienie kilku celów, które są ze sobą sprzeczne. Zastosowanie sztucznych sieci neuronowych w strategii optymalizacji dało już obiecujące wyniki w problematyce projektowania anten. Sieci neuronowe potrafią dostosowywać siędo zmieniających się wymagań i ograniczeń. Dlatego są one cennym narzędziem do dostrajania antendo konkretnych warunków pracy.Wykorzystanie sztucznych sieci neuronowych do projektowania elastycznych anten pozwala naukowcom rozszerzyć przestrzeń projektową, zoptymalizować charakterystykę anteny z większą wydajnością i ujawnić innowacyjne rozwiązania, które mogą nie być oczywiste przy użyciu tradycyjnych metod projektowania.W pracy autorzy proponują wyznaczenie niezbędnych parametrów i charakterystyk elastycznych anten z wykorzystaniem metod sztucznej inteligencji, czyli logiki rozmytej, sieci neuronowych i algorytmów genetycznych. Opracowano technikę dopasowywania opartą na sieci neuronowejdo projektowania elastycznych anten. Opracowano sieć neuronową. Wyprodukowano i przetestowano kilka próbek elastycznych antenna potrzeby uczenia sieci neuronowej. Wykonano symulację opracowanej sieci neuronowej. Na koniec przetestowano powstałą elastyczną antenę.
Rocznik
Strony
16--22
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Vinnytsia National Technical University, Faculty of Informational Electronic Systems, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Faculty of Informational Electronic Systems, Vinnytsia, Ukraine
  • Montr B.V., Hague, Netherlands
  • Vinnytsia National Technical University, Faculty of Informational Electronic Systems, Vinnytsia, Ukraine
  • University in Bratislava, Department of Information Management and Business Systems, Bratislava, Slovakia
Bibliografia
  • [1] Aggarwal C. C.: Neural Networks and Deep Learning. Springer International Publishing, 2023 [https://doi.org/10.1007/978-3-031-29642-0].
  • [2] Al-Haddad M. A. S. M., Jamel N., Nordin A. N.: Flexible Antenna: A Review of Design, Materials, Fabrication, and Applications. Journal of Physics: Conference Series 1878(1), 2021, 012068 [https://doi.org/10.1088/1742-6596/1878/1/012068].
  • [3] Arunprasad V., Gupta B., Karthikeyan T., Ponnusamy M.: Hybrid neuro-fuzzy-genetic algorithms for optimal control of autonomous systems. ICTACT Journal on Soft Computing 13(4), 2023, 3015–3020 [https://doi.org/10.21917/ijsc.2023.0424].
  • [4] Bai Z.: Research on Application of Artificial Intelligence in Communication Network. Journal of Physics: Conference Series 2209(1), 2022, 012014 [https://doi.org/10.1088/1742-6596/2209/1/012014].
  • [5] Bhalke D., Paikrao P. D., Anguera J.: Deep Learning-based Beamforming Approach Incorporating Linear Antenna Arrays. Journal of Telecommunications and Information Technology 2(2), 2024, 66–70 [https://doi.org/10.26636/jtit.2024.2.1530].
  • [6] Hamrouni C., Alutaybi A., Chaoui S.: Various Antenna Structures Performance Analysis based Fuzzy Logic Functions. International Journal of Advanced Computer Science and Applications 13(1), 2022 [https://doi.org/10.14569/ijacsa.2022.0130109].
  • [7] Ishaque M., Johar M. G. M., Khatibi A., Yamin M.: A novel hybrid technique using fuzzy logic, neural networks and genetic algorithm for intrusion detection system. Measurement: Sensors 30, 2023, 100933 [https://doi.org/10.1016/j.measen.2023.100933].
  • [8] Islamov I.: Optimization of Broadband Microstrip Antenna Device for 5G Wireless Communication Systems. Transport and Telecommunication Journal 24(4), 2023, 409–422 [https://doi.org/10.2478/ttj-2023-0032].
  • [9] Kahraman C., Onar S., Oztaysi B., Cebi S.: Role of Fuzzy Sets on Artificial Intelligence Methods : A literature Review. Transactions on Fuzzy Sets and Systems 1(2), 2023, 158-178 [https://doi.org/10.30495/tfss.2023.1976303.1060].
  • [10] Kayabasi A.: Triangular Ring Patch Antenna Analysis: Neuro-Fuzzy Model for Estimating of the Operating Frequency. ACES Journal 36(11), 2021, 1412–1417 [https://doi.org/10.13052/2021.aces.j.361104].
  • [11] Kirtania S. G., Elger A. W., Hasan Md. R., Wisniewska A., Sekhar K., Karacolak T., Sekhar P. K.: Flexible Antennas: A Review. Micromachines 11(9), 2020, 847 [https://doi.org/10.3390/mi11090847].
  • [12] Korkmaz S., Alibakhshikenari M., Kouhalvandi L.: A Framework for Optimizing Antenna Through Genetic Algorithm-Based Neural Network. Acta Marisiensis. Seria Technologica 20(1), 2023, 49–53 [https://doi.org/10.2478/amset-2023-0009].
  • [13] Kushwah V. S., Tomar G. S.: Design and Analysis of Microstrip Patch Antennas Using Artificial Neural Network. Trends in Research on Microstrip Antennas. InTech, 2017 [https://doi.org/10.5772/intechopen.69522].
  • [14] Lahiani M. A., Raida Z., Veselý J., Olivová J.: Pre-Design of Multi-Band Planar Antennas by Artificial Neural Networks. Electronics 12(6), 2023, 1345 [https://doi.org/10.3390/electronics12061345].
  • [15] Meulesteen S., Semenov A.O., Semenova O., Koval K., Datsiuk D., Fomenko H.: Cellular Lifesaving Flexible Device. 5th International Conference on Nanotechnologies and Biomedical Engineering ICNBME-2021 [https://doi.org/10.1007/978-3-030-92328-0_50].
  • [16] Mohamed N.: Importance of Artificial Intelligence in Neural Network through using MediaPipe. 6th International Conference on Electronics, Communication and Aerospace Technology ICECA, 2022 [https://doi.org/10.1109/iceca55336.2022.10009513].
  • [17] Naganaik M.: Design of Printed Antennas Using Hybrid Soft Computing Methods. International Journal for Research in Applied Science and Engineering Technology – IJRASET 6(4), 2018 [https://doi.org/10.22214/ijraset.2018.4704].
  • [18] Panagiotou S. C., Thomopoulos S. C. A., Capsalis C. N.: Genetic Algorithms in Antennas and Smart Antennas Design Overview: Two Novel Antenna Systems for Triband GNSS Applications and a Circular Switched Parasitic Array for WiMax Applications Developments with the Use of Genetic Algorithms. International Journal of Antennas and Propagation 2014, 729208 [https://doi.org/10.1155/2014/729208].
  • [19] Ramasamy R., Anto Bennet M.: An Efficient Antenna Parameters Estimation Using Machine Learning Algorithms. Progress in Electromagnetics Research C 130, 2023, 169–181 [https://doi.org/10.2528/pierc22121004]. [20] Saçın E. S., Durgun A. C.: Neural Network Modeling of Antennas on Package for 5G Applications. 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 2023, 1–5 [https://doi.org/10.23919/EuCAP57121.2023.10133407].
  • [21] Samantaray B., Das K. K., Roy J. S.: Designing Smart Antennas Using Machine Learning Algorithms. Journal of Telecommunications and Information Technology 4, 2023, 46–52 [https://doi.org/10.26636/jtit.2023.4.1329].
  • [22] Semenov A., Pastushenko A., Semenova O., Koval K.: Flexible Antenna for LTE-M1 Wearables. Physical and technological problems of transmission, processing and storage of information in infocommunication systems. IX International Scientific Practical Conference Physical and Technological Problems of Transmission, Processing and Storage of Information in Infocommunication Systems, Chernivtsi-Suceava 2021, 49–50.
  • [23] Semenov A., Semenova O., Meulesteen S.: Flexible Antenna for Cellular IoT Device. IEEE 2nd Ukrainian Microwave Week UkrMW, Ukraine 2022, 293–298 [https://doi.org/10.1109/UkrMW58013.2022.10037036].
  • [24] Semenov A., Semenova O., Meulesteen S., Koval K., Datsiuk D., Fomenko H., Ageyev D.: Cellular IoT Personal Health and Safety Monitoring. IEEE 9th International Conference on Problems of Infocommunications, Science and Technology PIC S&T 2022 [https://doi.org/10.1109/picst57299.2022.10238557].
  • [25] Semenov A., Semenova O., Pinaiev B., Kulias R., Shpylovyi O.: Development of a flexible antenna-wristband for wearable wrist-worn infocommunication devices of the LTE standard. Technology audit and production reserves 3(1), 2022, 20–26 [https://doi.org/10.15587/2706-5448.2022.261718].
  • [26] Sharma K., Pandey G. P.: Designing a Compact Microstrip Antenna Using the Machine Learning Approach. Journal of Telecommunications and Information Technology 4, 2020, 44–52 [https://doi.org/10.26636/jtit.2020.143520].
  • [27] da Silva I. N., Hernane Spatti D., Andrade Flauzino R., Liboni L. H. B., dos Reis Alves S. F.: Artificial Neural Networks. Springer International Publishing, 2017 [https://doi.org/10.1007/978-3-319-43162-8].
  • [28] Singh P., Panda S. S., Dash J. C., Riscob B., Pathak S. K., Hegde R. S.: Rapid Multi-Objective Inverse Design of Antenna Via Deep Neural Network Surrogate-Driven Evolutionary Optimization. TechRxiv. June 03, 2024 [https://doi.org/10.36227/techrxiv.171742511.11489750/v1].
  • [29] Sohail A.: Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences. Annals of Data Science 10(4), 2021, 1007–1018 [https://doi.org/10.1007/s40745-021-00354-9].
  • [30] Wang Z., Qin J., Hu Z., He J., Tang, D.: Multi-Objective Antenna Design Based on BP Neural Network Surrogate Model Optimized by Improved Sparrow Search Algorithm. Applied Sciences 12(24), 2022, 12543 [https://doi.org/10.3390/app122412543].
  • [31] Zhang X.-S.: Neural Networks in Optimization. In: Zhang X.-S.: Nonconvex Optimization and Its Applications. Springer US, New York 2013 [https://doi.org/10.1007/978-1-4757-3167-5].
  • [32] Zhang X.-Y., Tian Y.-B., Zheng X.: Antenna Optimization Design Based on Deep Gaussian Process Model. International Journal of Antennas and Propagation 2020, 2154928 [https://doi.org/10.1155/2020/2154928].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-081f53d4-d7c4-46c9-b74d-02349df9c06b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.