Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
End stage heart failure patients could benefit from left ventricular assist device (LVAD) implantation as bridge to heart transplantation or as destination therapy. However, LVAD suffers from several limitations, including the presence of a battery as power supply, the need for cabled connection from inside to outside the patient, and the lack of autonomous adaptation to the patient metabolic demand during daily activity. The authors, in this wide scenario, aim to contribute to advancement of the LVAD therapy by developing the hardware and the firmware of a portable autoregulation unit (ARU), able to fulfill the needs of sensorized VAD in terms of physic/physiological data storing, continuous monitoring, wireless control from the external environment and automatic adaptation to patient activities trough the implementation of autoregulation algorithms. Moreover, in order to answer the rules and safety requirements for implantable biomedical devices, a user control interface (UCI), was developed and associated to the ARU for an external manual safe control. The ARU and UCI functionalities and autoregulation algorithms have been successfully tested on bench and on animal, with a response time of 1 s for activating autoregulation algorithms. Animal experiments showed as the presence of the ARU do not affect the animal cardiovascular system, giving a proof of concept of its applicability in vivo.
Wydawca
Czasopismo
Rocznik
Tom
Strony
366--374
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
autor
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56100 Pisa, Italy
autor
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
autor
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Institute of Analytical Sciences, University Claude Bernard Lyon 1, Lyon, France
autor
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
autor
- The Clinical Physiology Institute, National Research Council, Pisa, Italy
Bibliografia
- [1] AlOmari AHH, Savkin AV, Stevens M, Mason DG, Timms D, Salamonsen RF, et al. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review. Physiol Meas 2013;34:R1–27.
- [2] Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nature Rev Cardiol 2011;8:30–41.
- [3] Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report—2014. J Heart Lung Transpl 2014.
- [4] Toyoda Y, Guy TS, Kashem A. Present status and future perspectives of heart transplantation. Off J Jpn Circ Soc 2013;77:1097–110.
- [5] Timms D. A review of clinical ventricular assist devices. Med Eng Phys 2011;33:1041–7.
- [6] Shvetank A, High A. Newer-generation ventricular assist devices. Best Pract Res Clin Anesthesiol 2012;26.
- [7] Milano CA, Simeone A. Mechanical circulatory support: devices, outcomes and complications. Heart Fail Rev 2013;18:35–53.
- [8] Sutlić Ž, Čekol Z, Barić D, Rudež I, Unić D, Planinc M, et al. Overview of new mechanical circulatory support devices. Rad Hrvat Akadem Znani Umet Med Znan 2011;509.
- [9] McCarthy PM, Portner PM, Tobler HG, Starnes VA, Ramasamy N, Oyer PE. Clinical experience with the Novacor ventricular assist system. Bridge to transplantation and the transition to permanent application. J Thorac Cardiovasc Surg 1991;102:578–87.
- [10] Parameshwar J, Wallwork J. Left ventricular assist devices: current status and future applications. Int J Cardiol 1997;62: S23–7.
- [11] Hrobowski T, Lanfear DE. Ventricular assist devices: is destination therapy a viable alternative in the non-transplant candidate? Curr Heart Fail Rep 2013;10:101–7.
- [12] Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001;345:1435–43.
- [13] Salzberg S, Lachat M, Zünd G, Oechslin E, Schmid ER, DeBakey M, et al. Left ventricular assist device as bridge to heart transplantation – lessons learned with the MicroMed DeBakey axial blood flow pump. Eur J Cardiothorac Surg 2003;24:113–8.
- [14] Westaby S, Siegenthaler M, Beyersdorf F, Massetti M, Pepper J, Khayat A, et al. Destination therapy with a rotary blood pump and novel power delivery. Eur J Cardiothorac Surg 2010;37.
- [15] Esmore D, Kaye D, Spratt P, Larbalestier R, Ruygrok P, Tsui S, et al. A prospective, multicenter trial of the VentrAssist left ventricular assist device for bridge to transplant: safety and efficacy. J Heart Lung Transpl 2008;27:579–88.
- [16] Strueber M, O'Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM, et al. Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol 2011;57:1375–82.
- [17] Santiago G, Novielli N, Cooper NJ. Cost-effectiveness of the implantable HeartMate II left ventricular assist device for patients awaiting heart transplantation. J Heart Lung Transpl 2012;31:450–8.
- [18] Boccaccio A, Carbone C, Galietti U, Mastropasqua F, Pappalettere C. A novel design of ventricular assist device: an in vitro feasibility study. Minim Invasive Ther 2012;21:377–87.
- [19] Kumpati GS, McCarthy PM, Hoercher KJ. Left ventricular assist device bridge to recovery: a review of the current status. Ann Thorac Surg 2001;71:S103–8.
- [20] www.sensorart.eu.
- [21] Salamonsen RF, Mason DG, Ayre PJ. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif Org 2011;35:E47–53.
- [22] Noor MR, Bowles C, Banner NR. Relationship between pump speed and exercise capacity during HeartMate II left ventricular assist device support: influence of residual left ventricular function. Eur J Heart Fail 2012;14:613–20.
- [23] Brassard P, Jensen AS, Nordsborg N, Gustafsson F, Møller JE, Hassager C, et al. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device. Constant versus increasing pump speed: a pilot study. Circ Heart Fail 2011;4:554–60.
- [24] www.jarvikheart.com.
- [25] McInnis BC, Guo ZW, Lu PC, Wang JC. Adaptive control of left ventricular bypass assist devices. IEEE Trans Autom Control 1985;30:322–9.
- [26] Kitamura T, Matsuda K, Akashi H. Adaptive control technique for artificial hearts. IEEE Trans Biomed Eng 1986; BME-30:839–44.
- [27] Yoshizawa M, Takeda H, Watanabe T, Miura M, Yambe T, Katahira Y, et al. An automatic control algorithm for the optimal driving of the ventricular-assist device. IEEE Trans Biomed Eng 1992;39:243–52.
- [28] Antaki JF, Boston JR, Simaan MA. Control of heart assist devices. IEEE Conf Dec Control 2003;4:4084–9.
- [29] Boston JR, Antaki J, Simaan MA. Hierarchical control of heart-assist devices. IEEE Rob Autom Mag 2003;10:54–64.
- [30] Verbeni A, Fontana R, Silvestri M, Tortora G, Vatteroni M, Trivella MG. An innovative adaptive control strategy for sensorized Left Ventricular Assist Devices. IEEE Trans Biomed Circ Syst 2014;8:660–8.
- [31] Tortora G, Fontana R, Fresiello L, Di Molfetta A, Silvestri M, Vatteroni M, et al. Experimental integration of Autoregulation Unit for left ventricular assist devices in a cardiovascular hybrid simulator. EMBC 2014.
- [32] Fontana R, Silvestri M, Tortora G, Vatteroni G, Trivella MG, Dario P. An Autoregulation Unit for enabling adaptive control of sensorized left ventricular assist device. EMBC 2014.
- [33] Castiglioni P, Faini A, Parati G, Di Rienzo M. Wearable seismocardiography. Proceedings of the 29th Annual International Conference of the IEEE EMBS; 2007.
- [34] Tortora G, Fontana R, Argiolas S, Vatteroni M, Dario P, Trivella MH. A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices. EMBC 2015.
- [35] Volkron M, Schima H, Huber L, Benkowski R, Morello G, Wieselthaler G. Development of a suction detection system for axial blood pumps. Artif Org 2004;28:709–16.
- [36] Brancato L, Keulemans G, Gijsenbergh P, Puers R. Plasma enhanced hydrophobicity of parylene-C surfaces for a blood contacting pressure sensor. Eurosens Proc 2014;87:336–9.
- [37] Trivella MG. Artificial heart mate. Pan Eur Netw: Sci Technol 2014;(11):136–7, http://www.paneuropeannetworkspublications.com/ST11/ files/assets/basic-html/page136.html.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-081d297c-cee2-4808-b16b-e120a792bca3