PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of novel velocity–resistivity relationships for granitic terrains based on complex collocated geotomographic modeling and supervised statistical analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The significance of velocity-resistivity relationships has been utilized in various geologic terrains and under different conditions. The approach is yet to be exploited in tropical granitic terrains, with no definitive empirical relationships being developed. The empirical relationships are critical for rapidly delineating subsurface petrophysical, geomechanical, hydrogeological, and soil-rock features. As a result, a novel approach has been used in this study to develop velocity-resistivity relationships for tropical granitic environments, combining complex collocated velocity (Vp) and resistivity (ρ) models with simple linear regression analysis. The granitic terrain of Penang Island, Malaysia, was chosen as the study area. The geotomographic results delineated three layers, which include the residual soils (topsoil and completely weathered granite), highly to relatively weathered granitic unit (including fractures), and integral/fresh granitic bedrock. Due to the complexity, ruggedness, and varying weathering and fracturing conditions of the subsurface lithologic units in tropical regions, the supervised regression modeling successfully developed a unified and other three specific velocity–resistivity empirical relations for the lithologic units. The derived velocity-resistivity empirical relations have high practical prediction accuracies to predict Vp data. The predicted Vp data and models from the velocity-resistivity relations had good lithological and structural correlations with their observed models. The overall performance of the results indicated that the velocity-resistivity empirical relations could delineate the subsurface geologic variabilities distinctively because they are resistivity-dependent. Hence, the developed comprehensive methodological and SLR workflows and the velocity-resistivity empirical relations were posited for use in granitic terrains with similar geology to the study area, especially in areas with shallow overburden.
Czasopismo
Rocznik
Strony
2675--2698
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
  • Department of Earth Sciences, Adekunle Ajasin University, 001, Akungba-Akoko, Ondo State, Nigeria
  • School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Bibliografia
  • 1. Abdul Hamid FAZ, Abu Bakar AF, Ng TF, Ghani AA, Mohamad Zulkifley MT (2019) Distribution and contamination assessment of potentially harmful elements (As, Pb, Ni, Cd) in top soil of Penang Island. Malays Environ Earth Sci 78:616. https://doi.org/10.1007/s12665-019-8626-0
  • 2. Abdullah I, Purwantoa HS (2001) Deformational history of the Eastern Belt. Penins Malays Gondwana Res 4:556
  • 3. Adedibu Sunny A, Andy Anderson B (2021) Evaluation of lithostratigraphic units and groundwater potential using the resolution capacities of two different electrical tomographic electrodes at dual-spacing. Contrib Geophys Geod 51(4):295–320. https://doi.org/10.31577/congeo.2021.51.4.1
  • 4. Ahmad F, Yahaya AS, Farooqi MA (2006) Characterization and geotechnical properties of Penang residual soils with emphasis on landslides. Am J Environ Sci 2:121–128. https://doi.org/10.3844/ajessp.2006.121.128
  • 5. Akingboye AS, Bery AA (2021a) Performance evaluation of copper and stainless-steel electrodes in electrical tomographic imaging. J Phys Sci 32(3):13–29. https://doi.org/10.21315/jps2021.32.3.2
  • 6. Akingboye AS, Bery AA (2021b) Evaluation of lithostratigraphic units and groundwater potential using the resolution capacities of two different electrical tomographic electrodes at dual-spacing. Contrib Geophys Geod 51(4):295–320. https://doi.org/10.31577/congeo.2021.51.4.1
  • 7. Akingboye AS, Bery AA (2022) Characteristics and rippability conditions of near-surface lithologic units (Penang Island, Malaysia) derived from multimethod geotomographic models and geostatistics. J Appl Geophys 204:104723. https://doi.org/10.1016/j.jappgeo.2022.104723
  • 8. Akingboye AS, Bery AA, Kayode JS, Asulewon AM, Bello R, Agbasi OE (2022) Near-surface crustal architecture and geohydrodynamics of the crystalline basement terrain of Araromi, Akungba-Akoko, SW Nigeria, derived from multi-geophysical methods. Nat Resour Res 31:215–236. https://doi.org/10.1007/s11053-021-10000-z
  • 9. Bai W, Kong L, Guo A (2013) Effects of physical properties on electrical conductivity of compacted lateritic soil. J Rock Mech Geotech Eng 5:406–411. https://doi.org/10.1016/j.jrmge.2013.07.003
  • 10. Balarabe B, Bery AA, Teoh YJ, Khalil AE (2022) New empirical approach for the estimation of soil cohesion and friction angle in 2D form for site investigations. Sains Malays 51(2):405–419. https://doi.org/10.17576/jsm-2022-5102-07
  • 11. Becken M, Burkhardt H (2004) An ellipticity criterion in magnetotelluric tensor analysis. Geophys J Int 159:69–82. https://doi.org/10.1111/j.1365-246X.2004.02376.x
  • 12. Bery AA, Saad R (2012) Correlation of seismic p-wave velocities with engineering parameters (N value and rock quality) for tropical environmental study. Int J Geosci 3:749–757. https://doi.org/10.4236/ijg.2012.34075
  • 13. Binley A, Kemna A (2005) DC resistivity and induced polarization methods. Hydrogeophysics. https://doi.org/10.1007/1-4020-3102-5_5
  • 14. Cao J, Yang X, Du G, Li H (2020) Genesis and tectonic setting of the Malaysian Waterfall granites and tin deposit: constraints from LA–ICP (MC)-MS zircon U-Pb and cassiterite dating and Sr–Nd–Hf isotopes. Ore Geol Rev 118:103336. https://doi.org/10.1016/j.oregeorev.2020.103336
  • 15. Carlos Santamarina J, Klein A, Fam MA (2001) Soils and waves:particulate materials behavior, characterization and process monitoring. J Soil Sediment 1(2):130–130. https://doi.org/10.1007/BF02987719
  • 16. Carroll JD, Green PE (1997) Applying the tools to multivariate data. In: Mathematical tools for applied multivariate analysis. Elsevier, pp 259–294
  • 17. Cocks LRM, Fortey RA, Lee CP (2005) A review of lower and middle Palaeozoic biostratigraphy in west peninsular Malaysia and southern Thailand in its context within the Sibumasu Terrane. J Asian Earth Sci 24:703–717. https://doi.org/10.1016/j.jseaes.2004.05.001
  • 18. Colombo D, De Stefano M (2007) Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: application to prestack depth imaging. Lead Edge 26:326–331. https://doi.org/10.1190/1.2715057
  • 19. Colombo D, Cogan M, Hallinan S, Mantovani M, Virgilio M, Soyer W (2008a) Near-surface P-velocity modelling by integrated seismic, EM, and gravity data: examples from the middle East. First Break 26:91–102. https://doi.org/10.3997/1365-2397.26.10.28560
  • 20. Colombo D, Mantovani M, Hallinan S, Virgilio M (2008b) Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: A CRB field study. In: SEG technical program expanded abstracts. pp 2674–2678
  • 21. Colombo D, Keho T (2010) The non-seismic data and joint inversion strategy for the near surface solution in Saudi Arabia. In: Society of exploration geophysicists international exposition and 80th annual meeting 2010, SEG 2010. pp 1934–1938
  • 22. Faust LY (1951) Seismic velocity as a function of depth and geologic time. Geophysics 16:192–206. https://doi.org/10.1190/1.1437658
  • 23. Faust LY (1953) A velocity function including lithologic variation. Geophysics 18:271–288. https://doi.org/10.1190/1.1437869
  • 24. Gallardo LA (2004) Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J Geophys Res 109:B03311. https://doi.org/10.1029/2003JB002716
  • 25. Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett. https://doi.org/10.1029/2003GL017370
  • 26. Gallardo LA, Meju MA (2007) Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophys J Int 169:1261–1272. https://doi.org/10.1111/j.1365-246X.2007.03366.x
  • 27. Gallardo LA, Meju MA (2011) Structure-coupled multiphysics imaging in geophysical sciences. Rev Geophys. https://doi.org/10.1029/2010RG000330
  • 28. González J, Saldaña M, Arzúa J (2019) Analytical model for predicting the UCS from P-wave velocity, density, and porosity on saturated limestone. Appl Sci 9:5265. https://doi.org/10.3390/APP9235265
  • 29. Hasan M, Shang Y, Jin W, Akhter G (2020) An engineering site investigation using non-invasive geophysical approach. Environ Earth Sci. https://doi.org/10.1007/s12665-020-09013-3
  • 30. Hasan M, Shang Y, Shao P, Yi X, Meng H (2022) Geophysical research on rock mass quality evaluation for infrastructure design. Earth Space Sci. https://doi.org/10.1029/2021EA002017
  • 31. Hasan M, Shang Y, Yi X, Shao P, He M (2022b) Determination of rock mass integrity coefficient using a non-invasive geophysical approach. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2022.07.008
  • 32. Hassan K (1990) A summary of the quaternary geology investigations in Seberang Prai, Pulau Pinang and Kuala Kurau. Bull Geol Soc Malays 26:47–53. https://doi.org/10.7186/bgsm26199005
  • 33. Jasin B (2013) Chert blocks in bentong-raub suture zone: a heritage of palaeo-tethys. Bull Geol Soc Malays 59:85–91. https://doi.org/10.7186/bgsm59201313
  • 34. Jug J, Stanko D, Grabar K, Hrženjak P (2020) New approach in the application of seismic methods for assessing surface excavatability of sedimentary rocks. Bull Eng Geol Env 79:3797–3813. https://doi.org/10.1007/s10064-020-01802-1
  • 35. Kim DY (1964) Synthetic velocity log. In: 33rd AIM International SEG. SEG, New Orleans
  • 36. Lin C-P, Lin C-H, Wu P-L, Liu H-C, Hung Y-C (2015) Applications and challenges of near surface geophysics in geotechnical engineering. Chin J Geophys 58:2664–2680. https://doi.org/10.6038/CJG20150806
  • 37. Loke MH, Barker RD (1996) Practical techniques for 3D resistivity surveys and data inversion 1. Geophys Prospect 44:499–523. https://doi.org/10.1111/j.1365-2478.1996.tb00162.x
  • 38. Loke MH, Wilkinson PB, Chambers JE, Uhlemann S, Dijkstra T, Dahlin T (2022) The use of asymmetric time constraints in 4-D ERT inversion. J Appl Geophys 197:104536. https://doi.org/10.1016/j.jappgeo.2022.104536
  • 39. Loke MH (2004) Rapid 2D resistivity and IP inversion using the least-square method—Geoelectrical Imaging 2-D and 3D. p 129
  • 40. Marquis G, Hyndman RD (1992) Geophysical support for aqueous fluids in the deep crust: seismic and electrical. Geophys J Int 110:91–105. https://doi.org/10.1111/j.1365-246X.1992.tb00716.x
  • 41. Meju MA, Gallardo LA, Mohamed AK (2003) Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials. Geophys Res Lett. https://doi.org/10.1029/2002GL016048
  • 42. Merritt AJ (2014) 4D Geophysical monitoring of hydrogeological precursors to landslide activation. PhD Thesis, University of Leeds, UK. ISBN: 978-0-85731-942-5
  • 43. Metcalfe I (2000) The bentong-raub suture zone. J Asian Earth Sci 18:691–712. https://doi.org/10.1016/S1367-9120(00)00043-2
  • 44. Metcalfe I (2001) The bentong-raub suture zone, permo-triassic orogenesis and amalgamation of the sibumasu and indochina terranes. Gondwana Res 4:700–701. https://doi.org/10.1016/S1342-937X(05)70498-6
  • 45. Metcalfe I (2013a) Tectonic evolution of the Malay Peninsula. J Asian Earth Sci 76:195–213. https://doi.org/10.1016/j.jseaes.2012.12.011
  • 46. Metcalfe I (2013b) Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
  • 47. Muñoz G, Bauer K, Moeck I, Schulze A, Ritter O (2010) Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models. Geothermics 39:35–45. https://doi.org/10.1016/j.geothermics.2009.12.004
  • 48. Ng SW-P, Whitehouse MJ, Searle MP, Robb LJ, Ghani AA, Chung S-L, Oliver GJH, Sone M, Gardiner NJ, Roselee MH (2015a) Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 2. U-Pb zircon geochronology and tectonic model. Geol Soc Am Bull 127:1238–1258. https://doi.org/10.1130/B31214.1
  • 49. Ng SW-PP, Chung S-LL, Robb LJ, Searle MP, Ghani AA, Whitehouse MJ, Oliver GJH, Sone M, Gardiner NJ, Roselee MH (2015b) Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: part 1. geochemical and Sr-Nd isotopic characteristics. Geol Soc Am Bull 127:1209–1237. https://doi.org/10.1130/B31213.1
  • 50. Olona J, Pulgar JA, Fernández-Viejo G, López-Fernández C, González-Cortina JM (2010) Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods. Near Surf Geophys 8:585–599. https://doi.org/10.3997/1873-0604.2010043
  • 51. Ong WS (1993) The geology and engineering geology of Pulau Pinang. Geological Survey of Malaysia. Volume 7 of Map Report. p 74
  • 52. Perez-Flores MA, Mendez-Delgado S, Gomez-Trevino E (2001) Imaging low-frequency and dc electromagnetic fields using a simple linear approximation. Geophysics 66:1067–1081
  • 53. Pour AB, Hashim M (2015) Structural mapping using PALSAR data in the central gold belt, Peninsular Malaysia. Ore Geol Rev 64:13–22. https://doi.org/10.1016/j.oregeorev.2014.06.011
  • 54. Quigley TP (2006) Ground proving seismic refraction tomography (SRT) in laterally variable karstic limestone terrain. M.Eng. Thesis, University of Florida, p 143
  • 55. Ronczka M, Wisén R, Dahlin T (2018) Geophysical pre-investigation for a Stockholm tunnel project: joint inversion and interpretation of geoelectric and seismic refraction data in an urban environment. Near Surf Geophys 16:258–268. https://doi.org/10.3997/1873-0604.2018009
  • 56. Rudman AJ (1982) Interrelationship of resistivity and velocity logs. In: Fitch AA (ed) Developments in geophysical exploration methods—3. Springer Netherlands, Dordrecht, pp 33–59. https://doi.org/10.1007/978-94-009-7349-7_2
  • 57. Rudman AJ, Whaley HF, Blakely RF, Biogs ME (1975) Transformation of resistivity to pseudovelocity logs. Am Assoc Petrol Geol Bull 59:1151–1165
  • 58. Salkind N (2007) Multiple correlation coefficient. In: Encyclopedia of measurement and statistics. Sage Publications, Inc.
  • 59. Schwartz MO, Rajah SS, Askury AK, Putthapiban P, Djaswadi S (1995) The Southeast Asian tin belt. Earth Sci Rev 38:95–293. https://doi.org/10.1016/0012-8252(95)00004-T
  • 60. Shang Y, Hasan M (2021) Analysis of rockslide and engineering slide via integration between rock mechanical and geophysical parameters. In: IOP Conference series: earth and environmental science vol 861, https://doi.org/10.1088/1755-1315/861/2/022013 p 022013
  • 61. Slater LD, Glaser DR (2003) Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization. Geophysics 68:1542–1558. https://doi.org/10.1190/1.1620628
  • 62. Slater LD, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67:77–88. https://doi.org/10.1190/1.1451353
  • 63. Tabachnick BG, Fidell LS (2019) Using multivariate statistics, 7th edn. Pearson. https://www.pearson.com/us/higher-education/program/Tabachnick-Using-Multivariate-Statistics-7th-Edition/PGM2458367.html
  • 64. Tate RB, Tan DNK, Ng TF (2009) Geological map of Peninsular Malaysia. In: Hutchison CS, Tan DNK (eds) Geology of Peninsular Malaysia. University of Malaya/Geological Society of Malaysia, Kuala Lumpur
  • 65. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, p 792. ISBN: 9780521339384
  • 66. Weatherby BB, Faust LY (1935) Influence of geological factors on longitudinal seismic velocities. AAPG Bull 19:1–8. https://doi.org/10.1306/3D932CA4-16B1-11D7-8645000102C1865D
  • 67. Zakaria MT, Mohd Muztaza N, Zabidi H, Salleh AN, Mahmud N, Rosli FN (2022) Integrated analysis of geophysical approaches for slope failure characterisation. Environ Earth Sci 81:299. https://doi.org/10.1007/s12665-022-10410-z
  • 68. Zeng Z, Kong L, Wang M, Sayem HM (2018) Assessment of engineering behaviour of an intensely weathered swelling mudstone under full range of seasonal variation and the relationships among measured parameters. Can Geotech J 55:1837–1849. https://doi.org/10.1139/cgj-2017-0582
  • 69. Zhao J, Broms BB, Zhou Y, Choa V (1994) A study of the weathering of the Bukit Timah granite part a: review, field observations, and geophysical survey. Bull Int Assoc Eng Geol 49:97–106. https://doi.org/10.1007/BF02595006
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-081cadbf-5c75-4646-9f4e-cab166f49b50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.